首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Continuous dielectrophoretic size-based particle sorting   总被引:1,自引:0,他引:1  
Continuous-flow dielectrophoretic (DEP) particle separation based on size is demonstrated in a microfluidic device. Polystyrene microspheres suspended in a neutrally buoyant aqueous solution are used as model particles to study DEP induced by an array of slanted, planar, interdigitated electrodes inside of a soft-lithography microchannel. The E-field gradients from the slanted electrodes impart a net transverse force component on the particles that causes them to "ratchet" across the channel. Over the length of the device, larger particles are deflected more than smaller particles according to the balance of hydrodynamic drag and DEP forces. Consequently, a flow-focused particle suspension containing different-sized particles is fractionated as the beads flow and separate down the length of the device. The flow behavior of spherical particles is modeled, and the total transverse particle displacement in the microfluidic device predicts fourth-order size and voltage and second-order inverse flow rate dependences. The model is verified experimentally for a range of flow rates, particle sizes, and E-field strengths.  相似文献   

2.
The aim of our study was to develop microfluidic devices using microchannel technology with the capability of capturing single cells. We analyzed and compared the cell-capturing efficiencies of series-loop microchannel and parallel-loop microchannel devices that were produced using polydimethylsiloxane (PDMS). Each set of microchannels was composed of a main flow channel and several branch channels with capturing zones. The microfluidic devices were designed to use the differences in flow rates between the main flow channel and the branch channels as a means of capturing single cells based on size and sequestering them within the microstructure of multiple capture zones. The data indicated that the flow medium encountered significant resistance in the series-loop microchannel device, which resulted in an inability to hold the captured cells within any of the capture zones. Flow resistance was, however, greatly reduced in the parallel-loop microchannel device compared to the series-loop device, and single cells were captured in all the capturing zones of the device. Our data suggest that the parallel-loop microchannel technology has significant potential for development toward high-throughput platforms capable of capturing single cells for physiological analyses at the single-cell level.  相似文献   

3.
A continuous flow micro total analysis system (micro-TAS) consisting of an on-chip microfluidic device connected to a matrix assisted laser desorption ionization [MALDI] time-of-flight [TOF] mass spectrometer (MS) as an analytical screening system is presented. Reaction microchannels and inlet/outlet reservoirs were fabricated by powderblasting on glass wafers that were then bonded to silicon substrates. The novel lab-on-a-chip was realized by integrating the microdevice with a MALDI-TOFMS standard sample plate used as carrier to get the microfluidic device in the MALDI instrument. A novel pressure-driven pumping mechanism using the vacuum of the instrument as a driving force induces flow in the reaction microchannel in a self-activating way. Organic syntheses as well as biochemical reactions are carried out entirely inside the MALDI-MS ionization vacuum chamber and analyzed on-line by MALDI-TOFMS in real time. The effectiveness of the micro-TAS system has been successfully demonstrated with several examples of (bio)chemical reactions.  相似文献   

4.
Microfluidic particle sorter employing flow splitting and recombining   总被引:1,自引:0,他引:1  
Yamada M  Seki M 《Analytical chemistry》2006,78(4):1357-1362
This paper describes an improved microfluidic device that enables hydrodynamic particle concentration and size-dependent separation to be carried out in a continuous manner. In our previous study, a method for hydrodynamic filtration and sorting of particles was proposed using a microchannel having multiple branch points and side channels, and it was applied for continuous concentration and separation of polymer particles and cells. In the current study, the efficiency of particle sorting was dramatically improved by geometrically splitting fluid flow from a main stream and recombining. With these operations, particles with diameters larger than a specific value move toward one sidewall in the mainstream. This control of particle positions is followed by the perfect particle alignment onto the sidewall, which increases the selectivity and recovery rates without using a liquid that does not contain particles. In this study, a microchannel having one inlet and five outlets was designed and fabricated. By simply introducing particle suspension into the device, concentrations of 2.1-3.0-microm particles were increased 60-80-fold, and they were collected independently from each outlet. In addition, it was demonstrated that the measured flow rates distributed into each side channel corresponded well to the theoretical values when regarding the microchannel network as a resistive circuit.  相似文献   

5.
A three-phase flow, water/n-heptane/water, was constructed in a microchannel (100-microm width, 25-microm depth) on a glass microchip (3 cm x 7 cm) and was used as a liquid membrane for separation of metal ions. Surface modification of the microchannel by octadecylsilane groups induced spontaneous phase separation of the three-phase flow in the microfluidic device, which allows control of interfacial contact time and off-chip analysis using conventional analytical apparatus. Prior to the selective transport of a metal ion through the liquid membrane in the microchannel, the forward and backward extraction of yttrium and zinc ions was investigated in a two-phase flow on a microfluidic device using 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (commercial name, PC-88A) as an extractant. The extraction conditions (contact time of the two phases, pH, extractant concentration) in the microfluidic device were examined. These investigations demonstrated that the conventional methodology for solvent extraction of metal ions is applicable to solvent extraction in a microchannel. Finally, we employed the three-phase flow in the microchannel as a liquid membrane and observed the selective transport of Y ion through the liquid membrane. In the present study, we succeeded, for the first time, in the selective separation of a targeted metal ion from an aqueous feed solution to a receiving phase within a few seconds by employing a liquid membrane formed in a microfluidic device.  相似文献   

6.
This paper describes a simple microfluidic sorting system that can perform size profiling and continuous mass-dependent separation of particles through combined use of gravity (1 g) and hydrodynamic flows capable of rapidly amplifying sedimentation-based separation between particles. Operation of the device relies on two microfluidic transport processes: (i) initial hydrodynamic focusing of particles in a microchannel oriented parallel to gravity and (ii) subsequent sample separation where positional difference between particles with different mass generated by sedimentation is further amplified by hydrodynamic flows whose streamlines gradually widen out due to the geometry of a widening microchannel oriented perpendicular to gravity. The microfluidic sorting device was fabricated in poly(dimethylsiloxane), and hydrodynamic flows in microchannels were driven by gravity without using external pumps. We conducted theoretical and experimental studies on fluid dynamic characteristics of laminar flows in widening microchannels and hydrodynamic amplification of particle separation. Direct trajectory monitoring, collection, and post-analysis of separated particles were performed using polystyrene microbeads with different sizes to demonstrate rapid (<1 min) and high-purity (>99.9%) separation. Finally, we demonstrated biomedical applications of our system by isolating small-sized (diameter <6 microm) perfluorocarbon liquid droplets from polydisperse droplet emulsions, which is crucial in preparing contrast agents for safe, reliable ultrasound medical imaging, tracers for magnetic resonance imaging, or transpulmonary droplets used in ultrasound-based occlusion therapy for cancer treatment. Our method enables straightforward, rapid, real-time size monitoring and continuous separation of particles in simple stand-alone microfabricated devices without the need for bulky and complex external power sources. We believe that this system will provide a useful tool to separate colloids and particles for various analytical and preparative applications and may hold potential for separation of cells or development of diagnostic tools requiring point-of-care sample preparation or testing.  相似文献   

7.
This paper reports a miniaturized immunosensor designed to determine a trace level cardiac marker, B-type natriuretic peptide (BNP), using a microfluidic device combined with a portable surface plasmon resonance (SPR) sensor system. Sample BNP solution was introduced into the microchannel after an immunoreaction with acetylcholine esterase-labeled antibody (conjugate), and only unbound conjugate was trapped on the BNP-immobilized surface in the flow channel. Then, the thiol compound generated by the enzymatic reaction with the trapped conjugate was accumulated on a gold thin film located downstream in the microchannel to monitor the real-time SPR angle shift. We achieved a detectable concentration range of 5 pg/mL-100 ng/mL by monitoring the SPR angle shift, which covers the required detection range for the BNP concentrations found in blood. This success resulted from the use of a T-shaped microfluidic device structure, which prevents the sample solution from flowing over the gold film used for SPR detection. We were able to measure trace levels of BNP peptide (15 fg) within 30 min since the procedure with our immunosensor is simpler than a multistep immunoassay through the simultaneous use of a labeled enzymatic reaction and the real-time monitoring of enzymatic product accumulation in the microfluidic device. We employed the procedure to detect serum BNP by using spiked samples in human serum and achieved satisfactory recovery for heat-treated samples to denature the esterase in the serum before the immunoreaction.  相似文献   

8.
Kim SJ  Song YA  Skipper PL  Han J 《Analytical chemistry》2006,78(23):8011-8019
We developed a drop-on-demand microdroplet generator for the discrete dispensing of biosamples into a bioanalytical unit. This disposable PDMS microfluidic device can generate monodisperse droplets of picoliter volume directly out of a plane sidewall of the microfluidic chip by an electrohydrodynamic mechanism. The droplet generation was accomplished without using either an inserted capillary or a monolithically built-in tip. The minimum droplet volume was approximately 4 pL, and the droplet generation was repeatable and stable for at least 30 min, with a typical variation of less than 2.0% of drop size. The Taylor cone, which is usually observed in electrospray, was suppressed by controlling the surface wetting property of the PDMS device as well as the surface tension of the sample liquids. A modification of the channel geometry right before the opening of the microchannel also enhanced the continuous droplet generation without applying any external pumping. A simple numerical simulation of the droplet generation verified the importance of controlling the surface wetting conditions for the droplet formation. Our microdroplet generator can be effectively applied to a direct interface of a microfluidic chip to a biosensing unit, such as AMS, MALDI-MS or protein microarray-type biochips.  相似文献   

9.
Electroosmotic flow (EOF) is commonly utilized in microfluidics. Because the direction of the EOF can be determined by the substrate surface charge, control of the surface chemical state offers the potential, in addition to voltage control, to direct the flow in microfluidic devices. We report the use of polyelectrolyte multilayers (PEMs) to alter the surface charge and control the direction of flow in polystyrene and acrylic microfluidic devices. Relatively complex flow patterns with simple arrangements of applied voltages are realized by derivatization of different arms of a single device with oppositely charged polyelectrolytes. In addition, flow in opposite directions in the same channel is possible. A positively derivatized plastic substrate with a negatively charged lid was used to achieve top-bottom opposite flows. Derivatization of the two sides of a plastic microchannel with oppositely charged polyelectrolytes was used to achieve side-by-side opposite flows. The flow is characterized using fluorescence imaging and particle velocimetry.  相似文献   

10.
Particle tracking techniques for electrokinetic microchannel flows   总被引:8,自引:0,他引:8  
We have applied particle tracking techniques to obtain spatially resolved velocity measurements in electrokinetic flow devices. Both micrometer-resolution particle image velocimetry (micro-PMV) and particle tracking velocimetry (PTV) techniques have been used to quantify and study flow phenomena in electrokinetic systems applicable to microfluidic bioanalytical devices. To make the flow measurements quantitative, we performed a series of seed particle calibration experiments. First, we measure the electroosmotic wall mobility of a borosilicate rectangular capillary (40 by 400 microm) using current monitoring. In addition to this wall mobility characterization, we apply PTV to determine the electrophoretic mobilities of more than 1,000 fluorescent microsphere particles in aqueous buffer solutions. Particles from this calibrated particle/ buffer mixture are then introduced into two electrokinetic flow systems for particle tracking flow experiments. In these experiments, we use micro-PIV, together with an electric field prediction, to obtain electroosmotic flow bulk fluid velocity measurements. The first example flow system is a microchannel intersection where we demonstrate a detailed documentation of the similitude between the electrical fields and the velocity fields in an electrokinetic system with uniform zeta potential, zeta. In the second system, we apply micro-PIV to a microchannel system with nonuniform zeta. The latter experiment provides a simultaneous measurement of two distinct wall mobilities within the microchannel.  相似文献   

11.
A miniaturized centrifugal microfluidic platform for lab-on-a-chip applications is presented. Unlike its macroscopic Lab-on-a-CD counterpart, the miniature Lab-on-a-Disc (miniLOAD) device does not require moving parts to drive rotation of the disc, is inexpensive, disposable, and significantly smaller, comprising a 10-mm-diameter SU-8 disc fabricated through two-step photolithography. The disc is driven to rotate using surface acoustic wave irradiation incident upon a fluid coupling layer from a pair of offset, opposing single-phase unidirectional transducers patterned on a lithium niobate substrate. The irradiation causes azimuthally oriented acoustic streaming with sufficient intensity to rotate the disc at several thousand revolutions per minute. In this first proof-of-concept, the capability of the miniLOAD platform to drive capillary-based valving and mixing in microfluidic structures on a disc similar to much larger Lab-on-a-CD devices is shown. In addition, the ability to concentrate aqueous particle suspensions at radial positions in a channel in the disc dependent on the particles' size is demonstrated. To the best of our knowledge, the miniLOAD concept is the first centrifugal microfluidic platform small enough to be self-contained in a handheld device.  相似文献   

12.
On-demand immobilization of proteins at specific locations in a microfluidic device would advance many types of bioassays. We describe a strategy to create a patterned surface within a microfluidic channel by electrochemical means, which enables site-specific immobilization of protein matrixes and cells under physiological conditions, even after the device is fully assembled. By locally generating hypobromous acid at a microelectrode in the microchannel, the heparin-coated channel surface rapidly switches from antibiofouling to protein-adhering. Since this transformation allows compartmentalizing of multiple types of antibodies into distinct regions throughout the single microchannel, simultaneous assay of two kinds of complementary proteins was possible. This patterning procedure can be applied to conventional microfluidic devices since it requires only some electrodes and a voltage source (1.7 V, DC).  相似文献   

13.
We designed, fabricated, and tested a microfluidic device for separation of plasma from whole human blood by size exclusion in a cross-flow. The device is made of a single mold of a silicone elastomer poly(dimethylsiloxane) (PDMS) sealed with a cover glass and is essentially disposable. When loaded with blood diluted to 20% hematocrit and driven with pulsatile pressure to prevent clogging of the channels with blood cells, the device can operate for at least 1 h, extracting approximately 8% of blood volume as plasma at an average rate of 0.65 microL/min. The flow in the device causes very little hemolysis; the extracted plasma meets the standards for common assays and is delivered to the device outlet approximately 30 s after injection of blood to the inlet. Integration of the cross-flow microchannel array with on-chip assay elements would create a microanalysis system for point-of-care diagnostics, reducing costs, turn-around times, and volumes of blood sample and reagents required for the assays.  相似文献   

14.
Surface tension gradients induce Marangoni flow, which may be exploited for fluid transport. At the micrometer scale, these surface‐driven flows can be quite significant. By introducing fluid–fluid interfaces along the walls of microfluidic channels, bulk fluid flows driven by temperature gradients are observed. The temperature dependence of the fluid–fluid interfacial tension appears responsible for these flows. In this report, the design concept for a biocompatible microchannel capable of being powered by solar irradiation is provided. Using microscale particle image velocimetry, a bulk flow generated by apparent surface tension gradients along the walls is observed. The direction of flow relative to the imposed temperature gradient agrees with the expected surface tension gradient. The phenomenon's ability to replace bulky peripherals, like traditional syringe pumps, on a diagnostic microfluidic device that captures and detects leukocyte subpopulations within blood is demonstrated. Such microfluidic devices may be implemented for clinical assays at the point of care without the use of electricity.  相似文献   

15.
The electrokinetics and hydrodynamics in a hybrid microfluidic/nanofluidic pore network configuration and its effect on the concentration enrichment of charged analytes are described. A hydrogel microplug, photopolymerized in a microfluidic channel, with negative surface charge serves as a nanoporous membrane and dictates the electrokinetic behavior within the adjoining microchannel compartments. The nanoporous hydrogel with a mean pore size on the order of the electrical double layer thickness imparts ion-permselectivity (cation-selectivity) to the migration of ionic species which, under the influence of an applied electrical field, drives concentration polarization in bulk solution near the interfaces between the two microchannel compartments and the hydrogel-based nanopores. The concentration enrichment efficiency for charged analytes depends on this concentration polarization, which strongly affects the distribution of local electrical field strength. In addition, electroosmotic flow in the device plays a critical role in determining the location of the analyte enrichment zone. A theoretical model and simulations are presented to explain the interplay of concentration polarization and electroosmotic flow with respect to the observed concentration enrichment of negatively charged analytes at the cathodic hydrogel plug-microchannel solution interface.  相似文献   

16.
Nanoacoustic fields are a promising method for particle actuation at the nanoscale, though THz frequencies are typically required to create nanoscale wavelengths. In this work, the generation of robust nanoscale force gradients is demonstrated using MHz driving frequencies via acoustic‐structure interactions. A structured elastic layer at the interface between a microfluidic channel and a traveling surface acoustic wave (SAW) device results in submicron acoustic traps, each of which can trap individual submicron particles. The acoustically driven deformation of nanocavities gives rise to time‐averaged acoustic fields which direct suspended particles toward, and trap them within, the nanocavities. The use of SAWs permits massively multiplexed particle manipulation with deterministic patterning at the single‐particle level. In this work, 300 nm diameter particles are acoustically trapped in 500 nm diameter cavities using traveling SAWs with wavelengths in the range of 20–80 µm with one particle per cavity. On‐demand generation of nanoscale acoustic force gradients has wide applications in nanoparticle manipulation, including bioparticle enrichment and enhanced catalytic reactions for industrial applications.  相似文献   

17.
In this paper we describe a multijunction microfluidic device for the injection of a substrate into an array of preformed plugs carried by an immiscible fluid in a microchannel. The device uses multiple junctions to inject substrate into preformed plugs without synchronization of the flow of substrate and the array of preformed plugs of reagent, which reduces cross-contamination of the plugs, eliminates formation of small droplets of substrate, and allows a greater range of injection ratios compared to that of a single T-junction. The device was based on a previously developed physical model for transport that was here adapted to describe injection and experimentally verified. After characterization, the device was applied to two biochemical assays, including evaluation of the enzymatic activity of thrombin and determination of the coagulation time of human blood plasma, which both provided reliable results. The reduction of cross-contamination and greater range of injection ratios achieved by this device may improve the processes that involve addition and titration of reagents into plugs, such as high-throughput screening of protein crystallization conditions.  相似文献   

18.
微流控液滴技术是制备单分散性药物载体的理想方法,对精确考察药物的释放行为、释放机理及动力学模型具有重要意义。采用亲水性修饰T型通道产生单分散性吡柔比星聚乳酸液滴,考察了通道性质对液滴生成的影响以及连续相和分散相流速与液滴尺寸的关系,制备了两种粒径的吡柔比星聚乳酸微球并考察了其体外释放行为。结果表明,经修饰的通道可产生稳定均一的液滴,通过调节两相流速可以有效控制液滴和微球的尺寸,制备的微球粒径均一,载药量和包封率高,吡柔比星体外释放缓慢且无明显突释,尺寸较大微球的释放速率较慢。  相似文献   

19.
微泵是微流体芯片发展水平的重要标志.为提高微泵的工作性能,提出了一种新型行波驱动的压电微泵.在设计了不同的微管道结构(锯齿形微管道和直微管道)的基础上,对压电执行器和微管道进行仿真分析和优化设计.采用热键合工艺制作具有不同微管道的微泵,在不同频率的驱动信号下测定行波微泵的频率特性,同时也测量了微泵流速与背压的关系曲线以及电压幅值特性.相比于直管道微泵,锯齿形管道微泵具有更好的工作性能,在26 V驱动电压下,其最大平均流速和背压分别达到33.36μL/min和1.13 kPa.  相似文献   

20.
Optimization of microfluidic fuel cells using transport principles   总被引:1,自引:0,他引:1  
Microfluidic fuel cells exploit the lack of convective mixing at low Reynolds number to eliminate the need for a physical membrane to separate the fuel from the oxidant. Slow transport of reactants in combination with high catalytic surface-to-volume ratios often inhibit the efficiency of a microfluidic fuel cell. The performance of microfluidic devices that rely on surface electrochemical reactions is controlled by the interplay between reaction kinetics and the rate of mass transfer to the reactive surfaces. This paper presents theoretical and experimental work to describe the role of flow rate, microchannel geometry, and location of electrodes within a microfluidic fuel cell on its performance. A transport model, based on the convective-diffusive flux of reactants, is developed that describes the optimal conditions for maximizing both the average current density and the percentage of fuel utilized. The results show that the performance can be improved when the design of the device includes electrodes smaller than a critical length. The results of this study advance current approaches to the design of microfluidic fuel cells and other electrochemically-coupled microfluidic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号