首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
N含量对超细Ti(C,N)基金属陶瓷显微组织和力学性能的影响   总被引:1,自引:0,他引:1  
用扫描电子显微镜(SEM)、金相显微镜等观察手段研究了N含量对超细Ti(C,N)基金属陶瓷显微组织和力学性能的影响.结果表明N含量对超细Ti(C,N)基金属陶瓷显微组织和力学性能有显著的影响.随N含量增加,其晶粒尺寸细化,晶粒长大受到抑制,并且这种抑制作用非常显著.与此同时,组织中高的N含量也会导致烧结体中孔隙率增加,严重损害着横向断裂强度(TRS).高的N含量一方面能有效抑制晶粒长大,另一方面也促进N的分解.  相似文献   

2.
《硬质合金》2017,(5):306-313
通过真空烧结方法制备了4种碳含量的Ti(C,N)基金属陶瓷,通过X射线衍射分析仪、扫描电镜、万能力学试验机、维氏硬度测试仪等仪器检测Ti(C,N)基金属陶瓷试样的物相结构、微观组织、抗弯强度、硬度和断裂韧性,分析了碳含量和烧结工艺对Ti(C,N)基金属显微组织和力学性能的影响。结果表明,增加碳含量和提高烧结温度能促进烧结过程中的冶金反应,金属陶瓷显微组织中具有黑芯-灰环结构硬质相的黑芯部分体积分数减少,环形相体积分数增加,粘结相体积分数减少,显微组织均匀化。碳含量对横向抗弯强度(TRS)有显著影响;碳含量对硬度(HV)和断裂韧性(KIC)的影响较小,随碳含量上升,均略有增加。在1 440~1 500℃范围烧结,金属陶瓷的TRS保持在相近的水平值;随烧结温度升高,硬度HV下降;高温1 520℃烧结,能显著提升Ti(C,N)基金属陶瓷的断裂韧性KIC,提高裂纹扩展阻力。  相似文献   

3.
NbC含量对Ti(C,N)基金属陶瓷组织和力学性能的影响   总被引:1,自引:1,他引:1  
研究了NbC含量对两种不同Ti(C,N)/TiC质量比金属陶瓷组织和性能的影响。结果表明:随着NbC含量的增长,环形相变得更加完整,粘接相分布越均匀。TiC和NbC含量的不同,影响了溶解和扩散,造成环形相与硬质相的体积分数和元素分布不同。力学性能测试表明,Ti(C,N)/TiC质量比为3︰2、w(NbC)=6%的试样的综合力学性能较好。  相似文献   

4.
WC含量对超细Ti(C,N)基金属陶瓷组织和性能的影响   总被引:1,自引:0,他引:1  
金之铂  刘宁  詹斌  李其龙 《硬质合金》2010,27(5):269-273
采用真空烧结法制备超细Ti(C,N)基金属陶瓷,研究WC含量0wt%~20wt%对超细Ti(C,N)基金属陶瓷显微组织和力学性能的影响。通过SEM观察组织形貌发现,添加WC后金属陶瓷的组织出现了典型的芯壳结构,并且芯壳产生了明显细化,但当WC添加量超过15wt%时,环形相碳化物粗化、变脆。伴随着WC添加量,抗弯强度、硬度、断裂韧性均呈现先上升再下降的趋势。在WC添加量15wt%时,抗弯强度达到1262MPa,维氏硬度值达到16.3HV,金属陶瓷的综合力学性能达到最优。  相似文献   

5.
本文以不同N/C原子比的Ti(C,N)固溶体为硬质相,通过真空烧结制备了Ti(C,N)基金属陶瓷。用三点弯曲法、洛氏硬度计、压痕法分别测得试样的抗弯强度、硬度、断裂韧性,并通过光学金相显微镜、XRD、SEM、EDS等手段研究了Ti(C,N)固溶体的N/C原子比对Ti(C,N)基金属陶瓷组织的影响规律。结果表明:在一定范围内随着N/C原子比的增大,Ti(C,N)固溶体在液相中溶解度下降,环形相的析出受到抑制,使得金属陶瓷的硬质相芯部逐渐细化且分散均匀,环形相厚度减薄。但Ti(C,N)固溶体的N/C原子比为6∶4及以上时,硬质相与液相之间的润湿性较差,使得金属陶瓷孔隙度增加,显微组织中开始出现亮白色的晶粒。随N/C原子比的增大,金属陶瓷的抗弯强度和硬度先增大后降低,断裂韧性逐渐降低。当Ti(C,N)固溶体的N/C原子比为5∶5时,金属陶瓷的综合力学性能最佳,其抗弯强度为2 429 MPa,硬度为92.2 HRA,断裂韧性为8.44 MPa·m~(1/2)。  相似文献   

6.
研究了添加0~2.0%晶粒长大抑制剂VC对纳米Ti(C,N)基金属陶瓷组织和性能的影响。结果表明,VC的加入使金属陶瓷的晶粒得到细化,抗弯强度、硬度提高,断裂韧度下降。在VC添加量为1.0%时,该金属陶瓷的抗弯强度为1204.6 MPa,维氏硬度为14.5 GPa,其综合性能最高。  相似文献   

7.
于超  刘宁  章晓波 《硬质合金》2007,24(4):193-197
采用粉末冶金方法真空烧结制备了添加Ni-Ti形状记忆合金的Ti(C,N)-Co系金属陶瓷,研究了Ni-Ti合金对Ti(C,N)基金属陶瓷显微组织和力学性能的影响。结果表明:未加Ni-Ti合金的Ti(C,N)基金属陶瓷的显微组织表现为经典的黑芯-灰壳组织,陶瓷相多为球形;而加入Ni-Ti后的金属陶瓷随着Ni-Ti加入量的增多,组织逐渐细化,出现了多边形的陶瓷相,陶瓷相与粘结相的界面呈现直线关系。同时,金属陶瓷的抗弯强度和断裂韧性随着Ni-Ti合金加入量的增多有明显的提高,而硬度基本保持不变;Ni-Ti合金的加入量为15wt%时金属陶瓷获得最好的力学性能。  相似文献   

8.
章晓波  刘宁 《硬质合金》2006,23(3):160-163
Ti(C,N)基金属陶瓷是一种新型工具材料,在高速切削刀具中得到广泛应用。本文介绍了金属陶瓷中Mo或Mo2C的作用,并综述了国内外关于Mo或Mo2C对Ti(C,N)基金属陶瓷显微组织和性能的影响。  相似文献   

9.
采用真空烧结工艺制备了Ti(C, N)基金属陶瓷,通过XRD、TEM和SEM等手段研究碳纳米管(CNTs)对金属陶瓷组织和性能的影响.结果表明:与未加碳纳米管的基体组织相比,添加CNTs的金属陶瓷组织中具有"白芯-灰壳"结构的小颗粒大大增加,金属陶瓷晶粒逐渐细化且分布均匀;当CNTs添加量(质量分数)为0.5%时,Ti(C, N)基金属陶瓷的硬度可达90.9HRA;金属陶瓷的抗弯强度比未加碳纳米管的试样提高14.1%,可达2 180.7 MPa,其强化机制主要为细晶强化;金属陶瓷的断裂韧性比未加碳纳米管的试样提高18.5%,可达14.7 MPa·m1/2,CNTs对金属陶瓷强韧化机制主要为桥联作用、拔出效应和裂纹偏转作用.  相似文献   

10.
原始粉末粒度对Ti(C,N)基金属陶瓷组织性能的影响   总被引:3,自引:5,他引:3  
采用粉末冶金方法制得四组不同粒度组合的Co-WC-Ti(C,N)金属陶瓷材料。对其室温力学性能进行测量,并采用XRD,SEM,EDX等方法对材料的相结构,显微组织等进行分析。研究表明,主要硬质相粒度的改变使相结构出现了一定程度的变化;以亚微米TiC为原始粉末细化了金属陶瓷组织中的晶粒;以纳米TiN为原始粉末使得晶粒大小趋向一致,分布均匀,并在一定程度上细化了晶粒;当TiC、TiN原始粉末分别为亚微米、纳米尺寸时,材料的综合力学性能最好。  相似文献   

11.
Ti(C,N)_w/Ti(C,N)基金属陶瓷的组织与力学性能研究   总被引:1,自引:0,他引:1  
向阳开  徐智谋 《硬质合金》2006,23(3):129-133
采用Ti(C,N)晶须和颗粒复合粉末(Ti(C,N)w+Ti(C,N)p)制备Ti(C,N)w/Ti(C,N)基金属陶瓷。研究了复合粉末对金属陶瓷组织及性能的影响。结果表明,Ti(C,N)w的加入,金属陶瓷的各项力学性能都得到了提高。组织表现为环形相结构特征,与Ti(C,N)基金属陶瓷相比,双层环形相结构所占比例增大,且尺寸加厚。烧结组织中Ti(C,N)w的长径比大于临界长径比,在强化金属陶瓷方面起着重要的作用。环形相使Ti(C,N)w与基体界面结合紧密,增韧机制主要表现为裂纹桥联和裂纹偏转,拔出效应不明显。  相似文献   

12.
用真空烧结法制备了添加微米级和亚微米级WC的Ti(C,N)基金属陶瓷,研究了WC粒径对Ti(C,N)基金属陶瓷组织和性能的影响。研究结果表明:添加微米级和亚微米级WC的Ti(C,N)基金属陶瓷试样均呈现出典型的"芯-环"结构,但在添加了亚微米级WC的试样中出现了"白芯-灰环"结构。同时,随着原始WC颗粒粒径的变小,其硬质相和黑色的芯相尺寸变小,而且黑色的芯相体积分数也变小。能谱分析表明,白色芯相具有与环形相相同的元素组成,但白色芯相含有较多的W和Mo元素。力学性能测试表明,添加亚微米级WC的金属陶瓷的抗弯强度要优于添加微米级WC的金属陶瓷,但硬度却偏低。  相似文献   

13.
采用粉末冶金工艺制备了Ni–xCr(wt%,x=0、10、20、30)粘结剂含量为18wt%和38wt%的Ti(C,N)基金属陶瓷,以研究Ni–xCr粘结剂成分及含量对Ti(C,N)基金属陶瓷显微组织和力学性能的影响。除Ni–30Cr粘结剂含量为38wt%的金属陶瓷外,在其它金属陶瓷中仅观察到了Ni基粘结相和Ti基碳氮化物陶瓷晶粒,而未观察到高Mo高Cr白色组织。粘结剂中含Cr时,陶瓷晶粒的黑芯中易出现非常细小的白色颗粒,特别是粘结剂含量为38wt%时,黑芯中通常出现大量的白色颗粒;并且,粘结剂中Cr含量高时,陶瓷晶粒的灰色外环明显变厚。不管粘结剂含量高低,金属陶瓷的硬度随着粘结剂中Cr含量增加而增加,且粘结剂含量为38wt%时增幅更明显。金属陶瓷的横向断裂强度和断裂韧性在粘结剂含量为18wt%时随着粘结剂中Cr含量增加而下降,而在粘结剂含量为38wt%时随着粘结剂中Cr含量增加先增加后下降,以Ni–10Cr作粘结剂时达到峰值。陶瓷晶粒细化致使沿晶断裂几率增加而穿晶断裂几率下降;通过陶瓷晶粒细化、裂纹偏转、裂纹桥联和诱发微裂纹等机制的协同作用,可显著提高Ti(C,N)基金属陶瓷的横向断裂强度和断裂韧性。  相似文献   

14.
Ti(C,N)基金属陶瓷的摩擦磨损研究   总被引:2,自引:1,他引:2  
刘灿楼  胡镇华 《硬质合金》1994,11(3):148-152
本文对Ti(C,N)基金属陶瓷材料的摩擦磨损行为及其磨损机理进行了研究.试验结果表明:与具有相同硬度的WC-Co合金和钢结硬质合金相比,Ti(C,N)金属陶瓷具有优异的耐磨性和较低的摩擦系数,其耐磨性随粘结相含量的增加而降低.Ti(C,N)基金属陶瓷磨损过程中,首先由表面微凸体间相互滑过,发生粘着,犁削,引起磨损,跑合一定时间后磨损由硬质相晶粒剥落控制.  相似文献   

15.
徐伟  胡巍巍  刘宁  李冠晓  汪金文 《硬质合金》2011,28(2):88-92,110
采用粉末冶金方法制备了Ti(C,N)基金属陶瓷,研究了TiC和TiN在不同粒度组合下,Ti(C,N)基金属陶瓷的组织和性能。利用SEM、XRD等分析手段对所制备的金属陶瓷进行分析。结果表明,采用微米级TiC和纳米级TiN粒度组合得到的Ti(C,N)基金属陶瓷综合力学性能最好。其抗弯强度达到了1 052.8 MPa,断裂韧性达到了9.3 MPa·m1/2。  相似文献   

16.
采用粉末冶金法制备了纳米改性Ti(C,N)基金属陶瓷,并用固体粉末法对其进行了渗硼处理。研究了渗硼处理对Ti(C,N)基金属陶瓷微观组织以及抗弯强度和硬度的影响。结果表明:渗硼处理使Ti(C,N)基金属陶瓷中生成了CoB、TiB2、MoB2和石墨相。金属陶瓷的渗硼层由硼化物层、扩散层和基体区组成,厚度为100~140μm。硼化物层主要由CoB组成,扩散层含有较多孔隙,基体区存在富硼的渗硼影响区,影响区具有与Ti(C,N)基金属陶瓷近似的微观组织,但金属相含量较少。渗硼处理使Ti(C,N)基金属陶瓷的抗弯强度降低,主要是由材料中产生的热应力、组织应力以及组织变化引起的。Ti(C,N)基金属陶瓷的表面硬度提高48.7%。在由渗硼层表面向内部100~140μm范围内,硬度呈下降趋势。  相似文献   

17.
碳添加量对Ti(C,N)基金属陶瓷组织和性能的影响   总被引:1,自引:0,他引:1  
碳含量对Ti(C,N)基金属陶瓷的显微组织和机械性能有着重要影响。本文综述了碳含量对Ti(C,N)基金属陶瓷晶粒大小、相成分和力学性能的影响,分析了影响机制。在一定范围内适当调整碳含量,可以获得综合性能良好的Ti(C,N)基金属陶瓷。  相似文献   

18.
《硬质合金》2017,(3):150-154
以TiC、VC、Co、Ni为原料,通过粉末冶金的方法制备了(Ti,V)C基金属陶瓷,结合XRD、SEMEDS及力学性能测试研究了n_(Ti)/n_V对(Ti,V)C基金属陶瓷显微组织和力学性能的影响以及(Ti,V)C基金属陶瓷烧结后的物相变化。结果表明:经高温烧结后TiC和VC固溶形成立方相(Ti,V)C。当n_(Ti)/n_V从4增加到15.75时,(Ti,V)C基金属陶瓷的硬度变化波动较小,抗弯强度先增加后降低。当n_(Ti)/n_V=7.35时,(Ti,V)C基金属陶瓷的显微组织得到细化,抗弯强度为1 237 MPa,维氏硬度为1 444 N/mm~2,综合力学性能较佳。  相似文献   

19.
采用自制的多元复式碳氮化物陶瓷粉末 ((Ti,W,Ta) (C,N) p)制备 (Ti,W,Ta) (C,N) p/Ti(C,N)基金属陶瓷。研究了 (Ti,W,Ta) (C,N) p 粉末的组织结构特征及其加入对金属陶瓷的组织及性能的影响。结果表明 ,多元复式碳氮化物粉末的晶格常数与元素的固溶度有很好的对应关系 ,调整粉末中元素的固溶度可控制粉末的晶格常数 ,进而控制材料的性能。 Ti(C,N)基金属陶瓷中 (Ti,W,Ta) (C,N) p 粉末的加入 ,有利于重金属元素 W和 Ta向粘结相中扩散 ,从而降低了硬质相在粘结相中的溶解度 ,阻碍了晶粒长大。(Ti,W,Ta) (C,N) p/Ti(C,N)基金属陶瓷各项性能指标优于 Ti(C,N)基金属陶瓷和国外对应的金属陶瓷牌号 CT5 2 5的产品。强化机制主要表现为细晶强化与固溶强化。  相似文献   

20.
球磨工艺对Ti(C,N)基金属陶瓷组织和性能的影响   总被引:1,自引:1,他引:0  
采用粉末冶金法制备了Ti(C,N)基金属陶瓷。重点研究了球磨工艺包括球料比、球磨转速以及球磨时间对Ti(C,N)基金属陶瓷的组织和性能的影响。采用XRD、SEM等分析手段对制备的金属陶瓷进行了分析。研究结果表明:球磨时在球料比为7:1,抗弯强度最高;转速为400 r/min,抗弯强度为1176.4 MPa,断裂韧性12.0 MPa·m~(1/2);混料时间为24 h,抗弯强度和断裂韧性均最高,分别达到1169.2 MPa和10.5 MPa·m~(1/2)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号