首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用近红外漫反射光谱技术对辽宁丹东蓝莓基地的六个蓝莓品种(埃利奥特、达柔、爱国者、北蓝、杜克、蓝丰)进行光谱分析,快速无损测定蓝莓可溶性固形物含量,利用一阶导数进行光谱预处理,主成分分析(PCA)和偏最小二乘法(PLS)建立蓝莓可溶性固形物预测模型。结果表明,所建模型的相关系数(Corr.Coeff.)为0.91518、校正集标准偏差(RMSEC)为0.801、预测集标准偏差(RMSEP)为1.06。该方法快速、准确、无损,能准确地预测蓝莓中可溶性固形物含量。   相似文献   

2.
基于近红外光谱技术检测蓝莓可溶性固形物含量   总被引:1,自引:0,他引:1  
采用近红外漫反射光谱技术对辽宁丹东蓝莓基地的六个蓝莓品种(埃利奥特、达柔、爱国者、北蓝、杜克、蓝丰)进行光谱分析,快速无损测定蓝莓可溶性固形物含量,利用一阶导数进行光谱预处理,主成分分析(PCA)和偏最小二乘法(PLS)建立蓝莓可溶性固形物预测模型。结果表明,所建模型的相关系数(Corr.Coeff.)为0.91518、校正集标准偏差(RMSEC)为0.801、预测集标准偏差(RMSEP)为1.06。该方法快速、准确、无损,能准确地预测蓝莓中可溶性固形物含量。  相似文献   

3.
应用近红外漫透射光谱技术探索玉露香梨可溶性固形物在线无损检测的可行性。358个试验样本被分成建模集和预测集(269∶89),分别用于建立模型和验证模型的预测能力。通过对玉露香梨样品近红外漫透射光谱分析发现,样品光谱在625,725,800nm处存在3个波峰,在673,765,825nm处存在3个波谷。通过对比不同预处理方法,发现漫透射近红外光谱分别经一阶微分、移动窗口平滑和多元散射校正组合预处理后建立的模型效果最好。结合组合预处理方法建立了偏最小二乘和偏最小二乘支持向量机预测模型,经比较,偏最小二乘支持向量机模型预测能力更强,模型预测均方根误差和相关系数分别为0.316%和0.949。对比发现主成分分析和径向基函数有利于提高最小二乘支持向量机模型的预测能力。试验结果表明采用近红外漫透射光谱技术结合最小二乘支持向量机算法,实现了玉露香梨可溶性固形物在线无损检测。  相似文献   

4.
可溶性固形物含量(SSC)是食品行业的重要技术参数之一。利用近红外光谱技术对不同醋龄的老陈醋SSC进行分析。在不同光谱预处理下,分别采用主成分回归(PCR)和偏最小二乘法(PLS)建立SSC的定量分析模型。结果表明,采用5点平滑预处理后,利用PLS建立的老陈醋SSC的定量分析模型最优,其校正集的相关系数R为0.999 9,校正标准偏差(RMSEC)为0.038 3,预测标准偏差(RMSEP)和交叉验证标准偏差(RMSECV)分别为0.082 1,0.096 4。表明采用近红外光谱技术对不同醋龄的老陈醋SSC进行定量分析建模是可行的。  相似文献   

5.
目的 检验自行搭建的半透射光谱采集平台检测水果中可溶性固形物含量的可行性, 并比较不同光谱采集方式对光谱模型的影响。方法 以红富士苹果为检测对象, 光谱采集平台中的USB2000 光谱仪采集半透射光谱数据, AntarisⅡ FT-NIR光谱仪采集漫反射光谱数据, 同标准法检测得到的苹果可溶性固形物含量建立偏最小二乘(PLS)模型, 并结合不同的预处理方式优化近红外光谱模型。结果 比较发现采用半透射的光谱采集方式优于漫反射方式。半透射光谱采用平滑处理后模型预测性能最佳, 对样本预测得到相关系数为0.937, 均方根误差为0.517。结论 自行搭建的光谱采集平台可行, 为今后检测水果的光谱采集方式提供参考。  相似文献   

6.
目的 基于近红外光谱技术结合偏最小二乘(Partial least square, PLS)法和最小二乘支持向量机回归(Least square-support vector regression, LS-SVR)法建立苹果气调贮藏期可溶性固形物(Soluble solids contents, SSC)含量预测模型。方法 在分析了气调贮藏期苹果细胞结构和SSC变化的基础上,采集了可见-近红外(Visible-near infrared, Vis-NIR)波段和长波近红外(Long wave near infrared, LWIR)波段下不同贮藏时间的苹果漫反射光谱信息,利用主成分分析方法(Principal component analysis,PCA)分析不同贮藏期苹果光谱信息分布特征,使用Kennard-Stone(K-S)算法以3:1比例对样本集进行划分,使用多元散射校正(Multiplicative scatter correction, MSC)和SG(Savitzky-Golay)平滑对光谱进行预处理,利用连续投影算法(Successive projections algorithm, SPA)和竞争自适应重加权采样(Competitive adaptive reweighted sampling, CARS)法对光谱进行特征波长提取,并建立SSC预测模型。结果 在LWIR波段下,经MSC预处理和CARS提取特征波长后建立的PLS模型取得了较好的预测精度,模型相关系数为0.900,均方根误差为0.478;经MSC、SG平滑预处理和CARS提取特征波长后建立的LS-SVR模型取得了更好的预测精度,模型相关系数为0.927,均方根误差为0.507。结论 构建的基于可见/近红外光谱无损预测模型可实现对气调贮藏期苹果SSC的准确预测,为高效贮藏技术提供了理论基础。  相似文献   

7.
近红外漫反射光谱检测网纹瓜可溶性固形物含量的研究   总被引:3,自引:0,他引:3  
袁琳  徐怀德  李钰金   《中国食品学报》2010,10(4):272-277
目的:利用近红外漫反射光谱检测网纹瓜可溶性固形物含量.方法:用偏最小二乘回归建模方法比较取样部位以及7种光谱预处理对建模的影响.结果:在有效信息波谱范围6101.9~5446.2cm-1和4601.5~4246.6 cm-1,对3个取样部位(共9个检测点)的平均光谱应用偏最小二乘结合矢量归一化建立模型,其决定系数R2=0.8647,内部交叉验证均方根差RMSECV为0.412.用此模型预测验证集22个样本,模型的R2=0.8895,预测标准偏差RMSEP为0.339.结论:该模型能够满足网纹瓜可溶性固形物含量快速检测的要求.  相似文献   

8.
近红外无损检测寒富苹果可溶性固形物含量(TSS)   总被引:1,自引:1,他引:1  
应用波长为643.26~985.11 nm的Purespect近红外透射光谱仪,分析了储藏时间对吸光度的影响。对不同储藏期寒富苹果的校正集样品进行了各自建模和共同建模,并研究了模型的差异性。结果表明:建立的共同模型预测结果较好,模型的相关系数(RC)为0.948,校正均方根误差(RMSEC)为0.468,预测均方根误差(RMSEP)为0.456,偏差(Bias)为0.027。该模型扩大了校正集样品化学成分含量的范围,提高了模型的适用范围,能满足实际生产要求。  相似文献   

9.
基于CARS-SPA的苹果可溶性固形物可见/近红外光谱在线检测   总被引:2,自引:0,他引:2  
采用CARS(competitive adaptive reweighted sampling)联合连续投影算法(SPA)方法筛选苹果可见/近红外光谱的特征变量,继而联合多种不同建模方法建立苹果可溶性固形物(SSC)预测模型,并对预测模型进行对比研究。研究结果显示,采用CARS-SPA联合筛选出的31个变量,通过采用PLS建立苹果SSC的可见/近红外光谱在线检测模型性能最稳定,其变量数仅为原始光谱的1.69%,预测集的相关系数和均方根误差分别为0.936和0.351%。研究表明采用CARS-SPA能有效提取苹果SSC的光谱特征变量,能有效简化模型并提高模型精度。   相似文献   

10.
目的采用近红外光谱技术,筛选有效变量对苹果可溶性固形物含量进行无损快速检测。方法以改进无变量信息消除算法为变量筛选方法,采用多元线性回归算法建立校正模型,采用外部盲样对模型进行预测准确度评价。结果基于改进无信息变量消除算法,筛选1391、1435、1521、1589nm4个关键波长作为变量,其所建校正模型的测定系数为0.6823,校正误差均方根为1.06,交互验证测定系数为0.6780,交互验证误差均方根为1.06。外部验证测定系数为0.6585,预测误差均方根为1.07。经F检验,预测模型的预测值与测定值之间具有显著相关性。结论该方法基本能够满足苹果可溶性固形物含量无损快速检测的需求,并可为水果可溶性固形物含量无损快速检测仪器的研制提供一定的技术参考。  相似文献   

11.
利用可见/近红外光谱对苹果可溶性固形物含量进行检测,并建立了最优预测模型。通过400~1 000 nm高光谱成像系统采集了120个"富士"苹果图像,分析比较了二阶导数(second derivative,SD)、标准正态变换(standard normal variation,SNV)以及多元散射校正(multi-scatter calibration,MSC) 3种光谱预处理方法对预测模型的检测效果;分别应用连续投影算法(successive proiection algorithm,SPA)和竞争性自适应重加权算法(competitive adaptive reweighted sampling,CARS)对光谱数据进行降维,进而建立基于特征光谱的误差反向传播(error back propagation,BP)网络和多元线性回归(multiple linear regression,MLR)预测模型。结果表明,二阶导数预处理后的BP网络模型优于原始光谱及其他预处理方法;通过提取特征波长建立的SPA-BP网络模型的预测性能最优,其预测集相关系数rp和均方根误差(root mean ...  相似文献   

12.
本文采用近红外光谱技术对酸枣仁及其三种常见伪品理枣仁、枳椇子和兵豆进行定性定量检测研究。分别制备不同伪品掺杂质量分数为1%~90%的单种掺杂物实验样品,以及多种伪品同时掺杂的样品,采集800~2500 nm范围的近红外光谱数据。首先利用主成分分析(principal component analysis,PCA)对酸枣仁及三种伪品进行初步定性鉴别。对于单一掺假物样品,采用五种不同预处理方法对光谱数据进行去噪。利用偏最小二乘回归(partial least squares regression,PLS)方法,建立PLS1模型定量预测掺假物含量,并采用连续投影算法(successive projection algorithm,SPA)挑选最优波长,优化定量模型。结果表明,理枣仁掺假建立的3波长检测模型的预测集决定系数R2p为0.9659,均方根误差(root mean square error,RMSEP)为6.1910%。枳椇子掺假建立的8波长检测模型的预测集决定系数R2p为0.9491,均方根误差(RMSEP)为7.6232%。兵豆掺假建立的5波长检测模型的预测集决定系数R2p为0.9666,均方根误差(RMSEP)为6.1437%。对于多掺杂物样品,建立了PLS2模型同时对不同成分进行定量预测,酸枣仁效果最好,R2p≥0.7115,枳椇子预测效果最差,R2p≥0.2007。研究表明,利用近红外光谱技术可以实现酸枣仁不同伪品掺假的快速无损检测。所建方法为后续酸枣仁及其他种子类中药材便携式无损检测仪器的开发提供了理论基础与参考依据,对保证中药材质量安全具有重要社会意义。  相似文献   

13.
研究利用近红外漫反射无损检测冰糖橙可溶性固形物含量和p H值的方法。以45个麻阳冰糖橙为标准样本,采集350 nm~1 800 nm范围的近红外光光谱,光谱采用9点滑动窗口平滑处理、一阶微分和多元散射校正分别进行预处理,然后采用偏最小二乘算法(PLS)、主成分回归算法(PCR)、多元线性回归算法(MLR)3种数学校正方法分别建立预测模型。经比较,采用一阶微分的PLS模型预测性能最好。  相似文献   

14.
磨盘柿可溶性固形物的可见/近红外漫反射光谱无损检测   总被引:1,自引:0,他引:1  
研究可见/近红外漫反射光谱技术快速检测磨盘柿可溶性固形物的方法。在可见/近红外光谱区域(570~1848nm),对比分析不同数学建模算法、不同导数处理方法和不同散射及标准化处理的果实可溶性固形物定标模型。结果表明:应用改进偏最小二乘回归算法、一阶导处理和去散射处理所建果实可溶性固形物定标模型的预测性能较优,其定标交互验证相关系数(Rcv)和预测相关系数(Rp2)分别为0.8076和0.8085,定标交互验证均方根误差(RMSECV)和预测均方根误差(RMSEP)分别为0.4546°Brix和0.4482°Brix。这表明,可见/近红外漫反射技术对磨盘柿可溶性固形物的快速无损检测具有可行性。  相似文献   

15.
以多批次黄桃脆片为分析对象,分别采集了可见/短波近红外光谱(400~1000 nm)和长波近红外光谱(1000~2500 nm)原始信息,分别采用标准正态变量变换(SNV)、多元散射校正(MSC)、移动平均平滑(MS),一阶导数(1-Der)预处理后,建立了全波段线性偏最小二乘法(PLS)和非线性支持向量机(SVM)预测模型,并结合外部试验进行可行性验证。结果表明,基于MSC-SVM的可见/短波红外光谱模型对可溶性固形物预测效果最佳,验证集的决定系数(R p)、预测均方根误差(RMSEP)、相对预测偏差(RPD)分别为0.761,1.998%和1.532;而基于MSC-SVM的长波近红外光谱模型对硬度预测效果相对最佳,对应R p、RMSEP和RPD分别为0.862,0.292 kg和1.991。基于近红外光谱系统可以实现对大批量黄桃脆片品质参数的快速无损检测。  相似文献   

16.
利用光谱技术结合化学计量学对李子可溶性固形物含量检测进行研究,为李子品质无损检测提供科学方法。通过反射式光谱采集系统获取了\  相似文献   

17.
针对现有的微量农药检测手段费时、复杂、前处理过程繁琐等不足,研究利用近红外光谱技术检测微量农药.制备两种不同的样品:不同浓度梯度的液体农药溶液样品和滤纸农药干燥样品,通过采取不同的光谱预处理手段,对比其相关系数和交叉验证均方差选择最适合的光谱预处理方法,采用偏最小二乘回归法建立预测模型.最后得出结论:滤纸农药干燥样品由于去除了绝大部分的水分使得检测精度相比较液体农药溶液样品有较大的提高,预测相关系数达到0.989,预测残差值为0.153,且相对分析误差为6.812,可以进行对农药浓度的定量检测.  相似文献   

18.
刘雪梅 《粮油加工》2010,(8):97-100
应用近红外漫反射无损检测梨果可溶性固形物。通过自行设计的NIR光谱系统测定了240个梨果样品的SSC。180个梨果样品用来建模,其余60个用来验证模型的性能。采集完整梨果的近红外漫反射光谱(350~1 800 nm),光谱经移动窗口平滑处理、一阶微分和二阶微分预处理后,再分别采用多元线性回归、主成分回归和偏最小二乘法,建立梨果可溶性固形物的定量预测数学模型。结果表明:采用一阶微分结合偏最小二乘法所建模型的预测效果较好,可溶性固形物定量预测数学模型的相关系数为0.928 5,均方根误差为0.436 4。近红外漫反射光谱作为一种无损的检测方法,可用于评价梨果的可溶性固形物。  相似文献   

19.
采用近红外光谱技术结合数据降维的方法,建立了哈密瓜可溶性固形物含量的预测模型,对原始光谱进行特征区间选择,共选取了6个子区间,432个光谱变量;将6个联合子区间的光谱数据分别结合特征选择竞争性自适应重加权采样算法、遗传算法、连续投影算法(successive projections algorithm,SPA)提取特征...  相似文献   

20.
为研究苹果的内部品质,提高检测的速度和稳定性,将近红外光谱漫透射技术应用于在线检测研究,并采取偏最小二乘回归(PLSR)算法结合不同光谱预处理方法建立苹果内部的可溶性固形物含量(SSC)的定量模型。结果表明:采用一阶微分结合多元散射校正(MSC)预处理后的模型最稳定,校正集和预测集的标准差分别为0.17和0.39,校正集的相关系数也达到0.988 3。试验结果说明近红外光谱漫透射技术能够快速、无损地检测出苹果的可溶性固形物含量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号