首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
This paper investigates the electromigration-induced failures of SnAg3.8Cu0.7 flip-chip solder joints. An under-bump metallization (UBM) of a Ti/Cr-Cu/Cu trilayer was deposited on the chip side, and a Cu/Ni(P)/Au pad was deposited on the BT board side. Electromigration damages were observed in the bumps under a current density of 2×104 A/cm2 and 1×104 A/cm2 at 100°C and 150°C. The failures were found to be at the cathode/chip side, and the current crowding effect played an important role in the failures. Copper atoms were found to move in the direction of the electron flow to form intermetallic compounds (IMCs) at the interface of solder and pad metallization as a result of current stressing.  相似文献   

2.
The microstructure of the ultrasmall eutectic Bi-Sn solder bumps on Au/Cu/Ti and Au/Ni/Ti under-bump metallizations (UBMs) was investigated as a function of cooling rate. The ultrasmall eutectic Bi-Sn solder bump, about 50 μm in diameter, was fabricated by using the lift-off method and reflowed at various cooling rates using the rapid thermal annealing system. The microstructure of the solder bump was observed using a backscattered electron (BSE) image and the intermetallic compound was identified using energy dispersive spectroscopy (EDS) and an x-ray diffractometer (XRD). The Bi facet was found at the surface of the ultrasmall Bi-Sn solder bumps on the Au/Cu/Ti UBM in almost all specimens, and the interior microstructure of the bumps was changed with the solidification rate. The faceted and polygonal intermetallic compound was found in the case of the Bi-Sn solder bump on the Au (0.1 μm)/Ni/Ti UBM, and it was confirmed to be the (Au1−x−yBixNiy)Sn2 phase by XRD. The intermetallic compounds grown form the Au (0.1 μm)/Ni/Ti UBM interface, and they interrupted the growth of Bi and Sn phases throughout the solder bump. The ultrasmall eutectic Bi-Sn solder bumps on the Au (0.025 μm)/Ni/Ti UBM showed similar microstructures to those on the Au/Cu/Ti UBM.  相似文献   

3.
We have studied two kinds of solder reactions between eutectic SnPb and Cu. The first is wetting reaction above the melting point of the solder, and the second is solid state aging below the melting point of the solder. In wetting reaction, the intermetallic compound (IMC) formation has a scallop-type morphology. There are channels between the scallops. In solid state aging, the IMC formation has a layer-type morphology. There are no channels but grain boundaries between the IMC grains. Why scallops are stable in wetting reactions has been an unanswered question of fundamental interest. We have confirmed that the scallop-type morphology is stable in wetting reaction by re-wetting the layer-type IMC by molten eutectic SnPb solder. In less than 1 min, a layer-type Cu6Sn5 is transformed back to scallops by the molten solder at 200 C. In analyzing these reactions, we conclude that the scallop-type morphology is thermodynamically stable in wetting reaction, but the layer-type morphology is thermodynamically stable in solid state aging, due to minimization of interfacial and grain boundary energies.  相似文献   

4.
Solid-state intermetallic compound (IMC) growth behavior plays and important role in solder joint reliability of electronic packaging assemblies. The directional impact of electromigration (EM) on the growth of interfacial IMCs in Ni/SAC/Ni, Cu/SAC/Ni single BGA ball solder joint, and fine pitch ball-grid-array (FPBGA) at the anode and cathode sides is reported in this study. When the solder joint was subjected to a current density of 5,000 A/cm2 at 125°C or 150°C, IMC layer growth on the anode interface was faster than that on the cathode interface, and both were faster than isothermal aging due to the Joule heating effect. The EM affects the IMC growth rate, as well as the composition and mechanical properties. The Young’s modulus and hardness were measured by the nanoindentation continuous stiffness measurement (CSM) from planar IMC surfaces after EM exposure. Different values were observed at the anode and cathode. The energy-dispersive x-ray (EDX) line scan analysis was conducted at the interface from the cathode to anode to study the presence of species; Ni was found in the anode IMC at SAC/Cu in the Ni/SAC/Cu joint, but not detected when the current was reverse. Electron-probe microanalysis (EPMA) measurement on the Ni/SAC/Ni specimen also confirmed the polarized Ni and Cu distributions in cathode and anode IMCs, which were (Ni0.57Cu0.43)3Sn4 and (Cu0.73Ni0.27)6Sn5, respectively. Thus, the Young’s moduli of the IMC are 141 and 175 GPa, respectively.  相似文献   

5.
Flip-chip technology with the layout of ball grid array has been widely used in today’s microelectronics industry. The elemental distribution in the edge of the solder bump is crucial for its correlation with the bump strength. In this study, Ni/Cu under-bump metallization (UBM) was used to evaluate the intermetallic compound (IMC) formation in the edge of the solder bump between the UBM and eutectic Sn-Pb solder in the 63Sn-37Pb/Ni/Cu/Ti/Si3N4/Si multilayer structure. During reflows, layered-type (Ni1−xCux)3Sn4 and island-like (Cu1−yNiy)6Sn5 IMCs formed in the interface between the solder and UMB, while only the (Cu1−yNiy)6Sn5 IMC was observed in the sideway of the Ni/Cu UBM. After high-temperature storage (HTS) at 150°C for 1,000 h, both (Cu1−yNiy)6Sn5 and (Cu1−zNiz)3Sn were found in the sideway of the Ni/Cu UBM. Two other IMCs, (Ni1−xCux)3Sn4 and (Cu1−yNiy)6Sn5, formed in the interface between the solder and UBM. The growth of the (Cu1−yNiy)6Sn5 IMC was relatively fast during HTS.  相似文献   

6.
Electroless Ni-P/Cu under-bump metallization (UBM) is widely used in electronics packaging. The Sn3.0Ag0.5Cu lead-free composite solder pastes were produced by a mechanical alloying (MA) process doped with Cu6Sn5 nanoparticles. In this study, the detailed interfacial reaction of Sn3.0Ag0.5Cu composite solders with EN(P)/Cu UBM was investigated after reflow. A field-emission scanning electron microscope (FESEM) was employed to analyze the interfacial morphology and microstructure evolution. The intermetallic compounds (IMCs) formed at the interface between the Sn3.0Ag0.5Cu composite solders and EN(P)/Cu UBM after one and three reflows were mainly (Ni1−x,Cux)3Sn4 and (Cu1−y,Niy)6Sn5. However, only (Ni1−x,Cux)3Sn4 IMC was observed after five reflows. The elemental distribution near the interfacial region was evaluated by an electron probe microanalyzer (EPMA) as well as field-emission electron probe microanalyzer (FE-EPMA). Based on the observation and characterization by FESEM, a EPMA, and an FE-EPMA, the reaction mechanism of interfacial phase transformation between Sn3.0Ag0.5Cu composite solders and EN(P)/Cu UBM after various reflow cycles was discussed and proposed.  相似文献   

7.
基于ANSYS有限元软件,综合考虑电子风力、温度梯度、应力梯度和原子密度梯度四种电迁移驱动机制,采用原子密度积分法(ADI)对倒装芯片球栅阵列封装(FCBGA)的Sn0.7Cu无铅焊点进行电迁移失效模拟。针对焊点直径、焊点高度、焊点下金属层(UBM)厚度三个关键参数进行电迁移失效的正交试验优化,探究焊点尺寸对电迁移失效的影响。研究表明:焊点直径和高度的增加会缩短焊点的电迁移失效寿命(TTF),而UBM层厚度对焊点失效寿命的影响相对较小;焊点局部拉应力对焊点的失效寿命影响较大,通常会加剧焊点的空洞失效。  相似文献   

8.
Intermetallic compound formation and morphology evolution in the 95Pb5Sn flip-chip solder joint with the Ti/Cu/Ni under bump metallization (UBM) during 350°C reflow for durations ranging from 50 sec to 1440 min were investigated. A thin intermetallic layer of only 0.4 μm thickness was formed at the 95Pb5Sn/UBM interface after reflow for 5 min. When the reflow was extended to 20 min, the intermetallic layer grew thicker and the phase identification revealed the intermetallic layer comprised two phases, (Ni,Cu)3Sn2 and (Ni,Cu)3Sn4. The detection of the Cu content in the intermetallic compounds indicated that the Cu atoms had diffused through the Ni layer and took part in the intermetallic compound formation. With increasing reflow time, the (Ni,Cu)3Sn4 phase grew at a faster rate than that of the (Ni,Cu)3Sn2 phase. Meanwhile, irregular growth of the (Ni,Cu)3Sn4 phase was observed and voids formed at the (Ni,Cu)3Sn2/Ni interface. After reflow for 60 min, the (Ni,Cu)3Sn2 phase disappeared and the (Ni,Cu)3Sn4 phase spalled off the NI layer in the form of a continuous layer. The gap between the (Ni,Cu)3Sn4 layer and the Ni layer was filled with lead. A possible mechanism for the growth, disappearance, and spalling of the intermetallic compounds at the 95Pb5Sn/UBM interface was proposed.  相似文献   

9.
Lead-free solder bumps have been widely used in current flip-chip technology (FCT) due to environmental issues. Solder joints after temperature cycling tests were employed to investigate the interfacial reaction between the Ti/Ni/Cu under-bump metallization and Sn-Ag-Cu solders. The interfacial morphology and quantitative analysis of the intermetallic compounds (IMCs) were obtained by electron probe microanalysis (EPMA) and field emission electron probe microanalysis (FE-EPMA). Various types of IMCs such as (Cu1−x,Agx)6Sn5, (Cu1−y,Agy)3Sn, and (Ag1−z,Cuz)3Sn were observed. In addition to conventional I–V measurements by a special sample preparation technique, a scanning electron microscope (SEM) internal probing system was introduced to evaluate the electrical characteristics in the IMCs after various test conditions. The electrical data would be correlated to microstructural evolution due to the interfacial reaction between the solder and under-bump metallurgy (UBM). This study demonstrated the successful employment of an internal nanoprobing approach, which would help further understanding of the electrical behavior within an IMC layer in the solder/UBM assembly.  相似文献   

10.
研究了复合无铅焊料Sn3.8Ag0.7Cu-xNi(x=0.5,1.0,2.0)与Au/Ni/Cu焊盘在不同回流次数下形成的焊点的性能.结果表明,Ni颗粒增强的复合焊料具有良好的润湿性能,熔点小于222℃;X为0.5的焊料界面IMC由针状(CuNi)6Sn5演化为双层IMC,即多面体状化合物(CuNi)6Sn5和回飞棒...  相似文献   

11.
Several international legislations recently banned the use of Pb because of environmental concerns. The eutectic Sn-Ag solder is one of the promising candidates to replace the conventional Sn-Pb solder primarily because of its excellent mechanical properties. In this study, interfacial reaction of the eutectic Sn-Ag and Sn-Pb solders with Ni/Cu under-bump metallization (UBM) was investigated with a joint assembly of solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. After reflows, only one (Ni,Cu)3Sn4 intermetallic compound (IMC) with faceted and particlelike grain feature was found between the solder and Ni. The thickness and grain size of the IMC increased with reflow times. Another (Cu,Ni)6Sn5 IMC with a rod-type grain formed on (Ni,Cu)3Sn4 in the interface between the Sn-Pb solder and the Ni/Cu UBM after more than three reflow times. The thickness of the (Ni,Cu)3Sn4 layer formed in the Sn-Pb system remained almost identical despite the numbers of reflow; however, the amounts of (Cu,Ni)6Sn5 IMC increased with reflow times. Correlations between the IMC morphologies, Cu diffusion behavior, and IMC transformation in these two solder systems will be investigated with respect to the microstructural evolution between the solders and the Ni/Cu UBM. The morphologies and grain-size distributions of the (Ni,Cu)3Sn4 IMC formed in the initial stage of reflow are crucial for the subsequent phase transformation of the other IMC.  相似文献   

12.
研究了Ti的加入对Sn0.7Cu无铅钎料润湿性能以及钎料/Cu界面微观组织的影响.结果表明:在Sn0.7Cu中添加微量Ti,提高了钎料的润湿性能,可使铺展面积提高5%左右,当钎焊时间为3s时,界面金属间化合物(IMC)形貌由原来的扇贝状变为锯齿状;随着钎焊时间延长,Sn0.7Cu/Cu和Sn0.7Cu0.008Ti/C...  相似文献   

13.
Nickel-based under-bump metallization (UBM) has been widely used in flip-chip technology (FCT) because of its slow reaction rate with Sn. In this study, solder joints after reflows were employed to investigate the mechanism of interfacial reaction between the Ni/Cu UBM and eutectic Sn-Pb solder. After deliberate quantitative analysis with an electron probe microanalyzer (EPMA), the effect of Cu content in solders near the interface of the solder/intermetallic compound (IMC) on the interfacial reaction could be probed. After one reflow, only one layered (Ni1−x,Cux)3Sn4 with homogeneous composition was found between the solder bump and UBM. However, after multiple reflows, another type of IMC, (Cu1−y,Niy)6Sn5, formed between the solder and (Ni1−x,Cux)3Sn4. It was observed that if the concentration of Cu in the solders near the solder/IMC interface was higher than 0.6 wt.%, the (Ni1−x,Cux)3Sn4 IMC would transform into the (Cu1−y,Niy)6Sn5 IMC. The Cu contents in (Ni1−x,Cux)3Sn4 were altered and not uniformly distributed anymore. With the aid of microstructure evolution, quantitative analysis, elemental distribution by x-ray color mapping, and related phase equilibrium of Sn-Ni-Cu, the reaction mechanism of interfacial phase transformation between the Sn-Pb solder and Ni/Cu UBM was proposed.  相似文献   

14.
Environmental concerns as well as legal constraints have been pushing research on flip chip technology towards the development of lead-free solders and also to new deposition techniques [Z.S. Karim, R. Schetty, Lead-free bump interconnections for flip-chip applications, in: IEEE/CPMT 1nternational Electronics Manufacturing Technology Symposium, 2000, pp. 274-278, P. Wölflick, K. Feldmann, Lead-free low-cost flip chip process chain: layout, process, reliability, in: IEEE International Electronics Manufacturing Technology (IEMT) Symposium, 2002, pp. 27-34, M. McCormack, S. Jin, The design and properties of new, pb-free solder alloys, in: IEEE/CPMT International Electronics Manufacturing Technology Symposium, 1994, pp. 7-14, T. Laine-Ylijoki, H. Steen, A. Forsten, Development and validation of a lead-free alloy for solder paste applications. IEEE Transactions on Components, Packaging, and Manufacturing technology, 20(3) (1997) 194-198, D. Frear, J. Jang, J. Lin, C. Zhang, Pb-free solders for flip-chip interconnects, JOM, 53(6) (2001) 28-32].Binary and ternary tin alloys are promising candidates to substitute lead-content components. In this paper, we describe an electroplating technique for high density FlipChip packaging [M. Bigas, E. Cabruja, Electrodeposited Sn/Ag for flip chip connection, CDE (2003)]. An analysis using Auger Electron Spectroscopy (AES) together with additional Energy Dispersive Xray analysis (EDS) tests and Scanning Electron Microscope (SEM) analysis have been performed to optimize the reflow process of the electrodeposited bumps.  相似文献   

15.
Nickel-based under bump metallization (UBM) has been widely used as a diffusion barrier to prevent the rapid reaction between the Cu conductor and Sn-based solders. In this study, joints with and without solder after heat treatments were employed to evaluate the diffusion behavior of Cu in the 63Sn-37Pb/Ni/Cu/Ti/Si3N4/Si multilayer structure. The atomic flux of Cu diffused through Ni was evaluated from the concentration profiles of Cu in solder joints. During reflow, the atomic flux of Cu was on the order of 1015–1016 atoms/cm2s. However, in the assembly without solder, no Cu was detected on the surface of Ni even after ten cycles of reflow. The diffusion behavior of Cu during heat treatments was studied, and the soldering-process-induced Cu diffusion through Ni metallization was characterized. In addition, the effect of Cu content in the solder near the solder/intermetallic compound (IMC) interface on interfacial reactions between the solder and the Ni/Cu UBM was also discussed. It is evident that the (Cu,Ni)6Sn5 IMC might form as the concentration of Cu in the Sn-Cu-Ni alloy exceeds 0.6 wt.%.  相似文献   

16.
Flip-chip interconnection technology plays a key role in today’s electronics packaging. Understanding the interfacial reactions between the solder and under-bump metallization (UBM) is, thus, essential. In this study, different thicknesses of electroplated Ni were used to evaluate the phase transformation between Ni/Cu under-bump metallurgy and eutectic Sn-Pb solder in the 63Sn-37Pb/Ni/Cu/Ti/Si3N4/Si multilayer structure for the flip-chip technology. Interfacial reaction products varied with reflow times. After the first reflow, layered (Ni1−x,Cux)3Sn4 was found between solder and Ni. However, there were two interfacial reaction products formed between solders and the UBM after three or more times reflow. The layered (Ni1−x,Cux)3Sn4 was next to the Ni/Cu UBM. The islandlike (Cu1−y,Niy)6Sn5 intermetallic compound (IMC) could be related to the Ni thickness and reflow times. In addition, the influence of Cu contents on phase transformation during reflow was also studied.  相似文献   

17.
This study characterizes the interfacial reactions that occur when Cu is soldered with 95 Pb-5Sn solder. A continuous layer of Cu3Sn ε phase forms during the soldering process. Previous studies suggest that the intermetallic layer spalls off during soldering. However, the present work shows that the intermetallic layer is intact after soldering and that any spalling observed is due to improper polishing. A new polishing technique was developed to preserve the intermetallic layer. The Cu3Sn has a fine columnar grain structure that is very brittle. Both intergranular and transgranular fracture modes are observed. The size of the intermetallic layer is dependent upon the length of time the solder is molten. The rate of formation of e phase was measured and used to determine an activation energy for diffusion of Sn in 95Pb-5Sn of 13 kcal/mol.  相似文献   

18.
The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1−x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1−x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1−y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1−y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016−1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.  相似文献   

19.
The interfacial reactions of solder joints between the Sn-4Ag-0.5Cu solder ball and the Sn-7Zn-Al (30 ppm) presoldered paste were investigated in a wafer level chip scale package (WLCSP). After appropriate surface mount technology (SMT) reflow process on the printed circuit board (PCB) with organic solderability preservative (Cu/OSP) and Cu/Ni/Au surface finish, samples were subjected to 150°C high-temperature storage (HTS), 1,000 h aging. Sequentially, the cross-sectional analysis is scrutinized using a scanning electron microscope (SEM)/energy-dispersive spectrometer (EDS) and energy probe microanalysis (EPMA) to observe the metallurgical evolution in the interface and solder buck itself. It was found that Zn-enriched intermetallic compounds (IMCs) without Sn were formed and migrated from the presolder paste region into the solder after reflow and 150°C HTS test.  相似文献   

20.
The effects of various elements of substrate metallization, namely, Au, Ni, and P, on the solder/under-bump metallization (UBM), (Al/Ni(V)/Cu) interfacial reactions in flip-chip packages during multiple reflow processes were systematically investigated. It was found that Au and P had negligible effects on the liquid-solid interfacial reactions. However, Ni in the substrate metallization greatly accelerated the interfacial reactions at chip side and degraded the thermal stability of the UBM through formation of a (Cu,Ni)6Sn5 ternary compound at the solder/UBM interface. This phenomenon can be explained in terms of enhanced grain-boundary grooving on (Cu,Ni)6Sn5 in the molten solder during the reflow process. This could eventually cause the rapid spalling of an intermetallic compound (IMC) from the solder/UBM interface and early failure of the packages. Our results showed that formation of multicomponent intermetallics, such as (Cu,Ni)6Sn5 or (Ni,Cu)3Sn4, at the solder/UBM interface is detrimental to the solder-joint reliability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号