首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract— In this paper, the current status of flexible OLED (FOLED®) display development will be reviewed, including previous results for passive‐matrix displays on plastic and current progress on active‐matrix displays on steel foil. The displays incorporate high‐efficiency small‐molecule phosphorescence OLED (PHOLE?) technology. The ultimate goal is to develop high‐information‐content high‐performance long‐lived, and large‐area FOLED displays that can be pulled or rolled out from a smaller pen‐like housing. The strategy for achieving this goal will be presented.  相似文献   

2.
3.
Abstract— Improvements achieved in image resolution and volume in a volumetric display based on the two‐frequency, two‐step upconversion (TFTS) method are presented. Two digital micromirror devices (DMDs) are utilized to generate fast scanning of the image volume at high resolution. Improvements in resolution and image size over previous implementations are achieved by choosing sodium—ytterbium—fluoride for the imaging crystal instead of the conventional ytterbium—lithium—fluoride composition. Experimentally, images at 532 nm were constructed using 45 slices with each slice rendered at 1024 × 768 resolution, resulting in almost 35 million voxels. The resulting system has the potential to achieve a resolution beyond a targeted 800 million voxels without viewpoint obstruction and with expandability to three‐color imagery.  相似文献   

4.
鲍苏苏  林斌 《计算机科学》2003,30(12):136-138
In the medical 3D Reconstruction, 3D object surface is reconstructed, by making use of the traditional slice-based reconstruction method. Due to the still existing problems, such as contour pairing, diverging surface,contour pair patching, etc. In this paper, the new methods are proposed for the problem solving. The contour pairing is carried out with overlapping. The diverging curved surface is decomposed with mathematical morphology. The boundaries generated by the morphologic operation are that of the diverging surfaces. The middle layer generated bythe lower layer and the upper layer is not to insert into the two layers but only to join in one of the two layer. The contour mosaic is patched with triangles to form the surface after the polygons are simplitied. The triangles areconstructed under the criterion of the shortest diagonal.  相似文献   

5.
Temporal multiplexing is a popular approach for presenting different images to the two eyes in stereoscopic 3D (S3D) displays. We examined the visibility of flicker and motion artifacts—judder, motion blur, and edge banding—on a 240‐Hz temporally multiplexed S3D OLED display. Traditionally, a frame rate of 120 Hz (60 Hz per eye) is used to avoid visible flicker, but there is evidence that higher frame rates provide visible benefits. In a series of psychophysical experiments, we measured the visibility of artifacts on the OLED display using temporal multiplexing and those of a 60‐Hz S3D LCD using spatial multiplexing. We determined the relative contributions of the frame rate of the content, update rate of the display, duty cycle, and number of flashes. We found that short duty cycles and low flash numbers reduce the visibility of motion artifacts, while long duty cycles and high flash numbers reduce flicker visibility.  相似文献   

6.
We propose a high optical efficiency three‐dimensional (3D)/two‐dimensional (2D) convertible integral imaging display by using a pinhole array on a reflective polarizer. The 3D mode is realized by adopting a pinhole array on a reflective polarizer to generate a point light source array. Three‐dimensional/2D convertible feature is realized by electrically controlling a polarization switcher. The reflective polarizer can reflect the light that has the orthogonal polarization direction with the reflective polarizer and transmit the light that has the same polarization direction with the reflective polarizer. The reflected light is recycled, so the optical efficiencies for both 3D and 2D modes are enhanced. In the practical experiments, the optical efficiencies of the proposed integral imaging display increase by 8.04 times and 1.65 times in 3D and 2D modes comparing with the conventional integral imaging display that has no light recycle, respectively.  相似文献   

7.
If discrepancy between accommodation and convergence caused by a stereoscopic display exceeds fusion range of human eyes, viewers will see ghosting image, which leads to the loss of correct depth information and even causes severe visual fatigue. In this paper, an experiment aiming to investigate the binocular fusion range is conducted for a polarized 3D display. Two experimental trials are arranged to examine two aspects of fusion range including outward depth and inward depth. 3D modeling software is used to generate the test stereoscopic image pairs, which vary in depth by adjusting the separation between the virtual cameras. Angular parallax corresponding to the limit of fusion range is obtained by determining critical point of ghosting images. The experimental results show deviation between theoretical fusion range calculated by formula and experimental one.?0.223° to 0.275° represent critical fusion range for the polarized 3D display to avoid ghosting images.  相似文献   

8.
In order to investigate visual experience for watching the autostereoscopic three‐dimensional (3D) projection display, we conduct a subjective evaluation experiment by a questionnaire when viewing video clips. Factor analysis is adopted to classify the evaluation items for the perpetual constructs of visual experience. Then a mixed design with repeated measurement analysis of variance with dimension and display duration as factors is carried out on the evaluation data to check the factorial effects and interactions for statistical significance. The results of factor analysis extract five factors including visual comfort, image quality, distortion, naturalness, and presence, which can be used as comprehensive indicators to evaluate the autostereoscopic 3D projection display. The results of analysis of variance indicate that image quality, which is used to assess two‐dimensional contents, is no longer applicable. It is necessary to give consideration to depth when evaluating 3D visual experience. Although 3D scenes enhance the overall subjective performance such as naturalness and presence, the health issues and stereoscopic distortion related to the introduction of depth cannot be ignored.  相似文献   

9.
An 8‐in. flexible active‐matrix organic light‐emitting diode (AMOLED) display driven by oxide thin‐film transistors (TFTs) has been developed. In‐Ga‐Zn‐O (IGZO)‐TFTs used as driving devices were fabricated directly on a plastic film at a low temperature below 200 °C. To form a SiOx layer for use as the gate insulator of the TFTs, direct current pulse sputtering was used for the deposition at a low temperature. The fabricated TFT shows a good transfer characteristic and enough carrier mobility to drive OLED displays with Video Graphic Array pixels. A solution‐processable photo‐sensitive polymer was also used as a passivation layer of the TFTs. Furthermore, a high‐performance phosphorescent OLED was developed as a red‐light‐emitting device. Both lower power consumption and longer lifetime were achieved in the OLED, which used an efficient energy transfer from the host material to the guest material in the emission layer. By assembling these technologies, a flexible AMOLED display was fabricated on the plastic film. We obtained a clear and uniform moving color image on the display.  相似文献   

10.
Dual layered display or also called tensor display that consists of two panels in a stack can present full‐parallax 3D images with high resolution and continuous motion parallax by reconstructing corresponding light ray field within a viewing angle. The depth range where the 3D images can be displayed with reasonable resolution, however, is limited around the panel stack. In this paper, we propose a dual layered display that can present stereoscopic images to multiple viewers located at arbitrary positions in observer space with high resolution and large depth range. Combined with the viewer tracking system, the proposed method provides a practical way to realize high‐resolution large‐depth auto‐stereoscopic 3D display for multiple observers without restriction on the observer position and the head orientation.  相似文献   

11.
Abstract— A flat‐panel display with a slanted subpixel arrangement has been developed for a multi‐view three‐dimensional (3‐D) display. A set of 3M × N subpixels (M × N subpixels for each R, G, and B color) corresponds to one of the cylindrical lenses, which constitutes a lenticular lens, to construct each 3‐D pixel of a multi‐view display that offers M × N views. Subpixels of the same color in each 3‐D pixel have different horizontal positions, and the R, G, and B subpixels are repeated in the horizontal direction. In addition, the ray‐emitting areas of the subpixels within a 3‐D pixel are continuous in the horizontal direction for each color. One of the vertical edges of each subpixel has the same horizontal position as the opposite vertical edge of another subpixel of the same color. Cross‐talk among viewing zones is theoretically zero. This structure is suitable for providing a large number of views. A liquid‐crystal panel having this slanted subpixel arrangement was fabricated to construct a mobile 3‐D display with 16 views and a 3‐D resolution of 256 × 192. A 3‐D pixel is comprised of 12 × 4 subpixels (M = 4 and N = 4). The screen size was 2.57 in.  相似文献   

12.
针对爆炸与冲击问题并行仿真计算软件PMMIC-3D(Parallel Multi-Material in Cell 3D)的计算网格为正交六面体网格的特点,开发与PMMIC-3D接口统一的可对任意复杂三维实体模型进行大规模有限差分网格生成的三维前处理软件MESH-3D.MESH-3D采用CSG和STL模型两种建模方式进行复杂实体建模,并采用基于边的整体切片算法,借鉴计算机图形学中的扫描线填充算法完成三维有限差分网格划分.在绘制网格时,删除网格单元的公共面,大大缩短计算时间和减少存储空间,实现对网格的快速消隐显示.MESH-3D可实现百亿量级网格单元的生成和显示.三维前处理软件MESH-3D的开发有力地支持爆炸与冲击问题的仿真计算.  相似文献   

13.
《Displays》2014,35(4):196-201
The spectral analysis of Heart Rate Variability (HRV) can be used for assessing the autonomic nervous activities and further the physiological conditions of subjects. This study intended to explore whether or not people would have fatigue, faintness and other kinds of uncomfortable conditions after watching a 3D film by using HRV measures as the objective physiological indices, in addition to other subjective physiological indices.Twenty men aged 22 ± 2 experienced watching 3D films and 2D films and were served as the controls of themselves. As the controls, the subjects had to rest at the same place. All subjects were are randomized for taking different experiences, and the electrocardiographic (ECG) signals were recorded during the whole process. The researchers could obtain the indices of the autonomic nervous activities before and after experiencing 3D and 2D movies with the help of spectral HRV analyses, along with the objective physiological information. The subjects were requested to fill out the questionnaire for the subjective feelings after the movie experiences.It was found that the subjects’ high-frequency power (HFP) representing parasympathetic nervous activities decreases after watching a 3D film. The sympathetic and parasympathetic nerve activities before and after watching a 2D film were not significantly different. The subjects complained that they felt dizzy, had headaches, and got visual fatigue while watching a 3D film.This study found that the subjects’ parasympathetic nerve activities were reduced after watching a 3D film, indicating that watching a 3D film would make people uncomfortable and tired. This result was the same as that of the questionnaire. Thus, HRV analyses could be an objective physiological index for discomfort as viewing 3D films.  相似文献   

14.
Abstract— An autostereoscopic 3‐D display suitable for the mobile environment is prototyped and evaluated. First, the required conditions for a 3‐D display in a mobile environment are considered, and the three major requirements are clarified: small size, viewing‐position flexibility, and application support. An application of a mobile‐type 3‐D display should be different from that of a large‐sized 3‐D display because a mobile‐type 3‐D display cannot realize the feeling of immersion while large‐sized 3‐D displays can realize it easily. From this assumption, it is considered that it is important to realize the feeling to handle a 3‐D image. Three types of 3‐D displays are developed to satisfy these requirements. They are subjectively evaluated to confirm their attractiveness. Results of the tests show that intuitive interaction can increase the reality of the 3‐D image in the sense of unity and also can improve the solidity and depth impression of the 3‐D image.  相似文献   

15.
3D 打印技术在航天、军工、机器人等领域应用广泛,但也存在诸多问题,如阶梯效应所带来的叠层误差、2.5D 制造原理导致的打印零件各向异性、支撑结构的打印及后处理导致的耗时和耗能等问题。针对上述不足,该文提出一种回转式曲面分层 3D 打印方法,对多自由度回转式 3D 打印设备的设计方法进行研究,通过构型综合和尺度综合确定了打印机构型及结构参数,提出了曲面打印路径规划方法。通过联合仿真与样机实验,验证了 3D 打印设备构型综合与尺度设计的有效性,为打印装备创新设计、曲面打印过程规划策略及相关实验研究提供了新思路。  相似文献   

16.
基于Java3D的立体显示技术及其在仿真中的应用   总被引:2,自引:0,他引:2  
提出用虚拟环境建模API Java3D产生场景左右眼图像的关键技术,以及用Java3D如何控制影响立体显示效果的主要因素,这些主要因素是左右图像视差、虚拟眼睛视场宽度和虚拟眼睛到显示平面的距离。这些技术已成功应用于Java3D开发的汽车驾驶仿真系统中以实现立体显示。这些技术为用Java3D开发视景仿真系统和三维立体视觉游戏软件提供支持。  相似文献   

17.
Abstract— Research described in this paper encompasses the design and building of glasses‐free (autostereoscopic) displays that utilize a direct‐view liquid‐crystal display whose backlight is provided by a projector and novel steering optics. This is controlled by the output of a multi‐user head‐position tracker. As the displays employ spatial multiplexing on a liquid‐crystal‐display screen, they are inherently 2‐D/3‐D switchable with 2‐D being achieved by simply displaying the same image in the left and right channels. Two prototypes are described in this paper; one incorporating a holographic projector and the other a conventional LCOS projector. The LCOS projector version addresses the limitations of brightness, cross‐talk, banding in the images, and laser stability that occur in the holographic projector version. The future development is considered and a comparison between the prototypes and with other 3‐D displays is given.  相似文献   

18.
Abstract— This paper describes a method for reducing the discrepancy between accommodation and convergence when viewing stereoscopic 3‐D images. The method uses a newly developed stereoscopic 3‐D display system with a telecentric optical system and a mobile LCD. The examination of a mono‐focal lens showed that a correction lens having the appropriate refractive power and conditions for presenting stereoscopic 3‐D images clearly reduces the discrepancy between accommodation and convergence. The authors also developed a stereoscopic 3‐D display that uses dynamic optical correction to reduce the discrepancy between accommodation and convergence. The display equalizes the theoretical points of accommodation and convergence. The purpose of the development was to expand the regeneration range of a stereoscopic 3‐D image having the appropriate accommodation. An evaluation of the developed display showed that it resolves the discrepancy between convergence and accommodation.  相似文献   

19.
Abstract— A multi‐view depth‐fused 3‐D (DFD) display that provides smooth motion parallax for wide viewing angles is proposed. A conventional DFD display consists of a stack of two transparent emitting screens. It can produce motion parallax for small changes in observation angle, but its viewing zone is rather narrow due to the split images it provides in inclined views. On the other hand, even though multi‐view 3‐D displays have a wide viewing angle, motion parallax in them is discrete, depending on the number of views they show. By applying a stacked structure to multi‐view 3‐D displays, a wide‐viewing‐angle 3‐D display with smooth motion parallax was fabricated. Experimental results confirmed the viewing‐zone connection of DFD displays while the calculated results show the feasibility of stacked multi‐view displays.  相似文献   

20.
Abstract— The De Montfort University (DMU) autostereoscopic 3‐D display, intended for television applications, is described. It provides freedom of viewer movement over a typical “living room” sized area, with no restrictions on viewer's head positions. The display is capable of supplying 3‐D images to multiple viewers who do not need to wear special glasses. It operates by producing regions (exit pupils) in the viewing field where either a left or a right image is perceived. The positions of the exit pupils are steered to the viewers' eyes by the use of head tracking. Design issues that became apparent during the construction of a first prototype, and the findings from tests on it, are described. In addition, the current status of a more advanced prototype is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号