首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our objectives were to determine the effect of starter crude protein (CP) content on growth of Holstein calves from birth to 10 wk of age in an enhanced early nutrition program, and to compare the enhanced program to a conventional milk replacer program. Calves (64 female, 25 male) were assigned to 3 treatments in a randomized block design: 1) conventional milk replacer (20% CP, 20% fat) plus conventional starter [19.6% CP, dry matter (DM) basis], 2) enhanced milk replacer (28.5% CP, 15% fat) plus conventional starter, and 3) enhanced milk replacer plus high-CP starter (25.5% CP, DM basis). Calves began treatments (n=29, 31, and 29 for treatments 1 to 3) at 3 d of age. Conventional milk replacer (12.5% solids) was fed at 1.25% of birth body weight (BW) as DM daily in 2 feedings from wk 1 to 5 and at 0.625% of birth BW once daily during wk 6. Enhanced milk replacer (15% solids) was fed at 1.5% of BW as DM during wk 1 and 2% of BW as DM during wk 2 to 5, divided into 2 daily feedings. During wk 6, enhanced milk replacer was fed at 1% of BW as DM once daily. Calves were weaned at d 42. Starter was available for ad libitum intake starting on d 3. Starter intake was greater for calves fed conventional milk replacer. For calves fed enhanced milk replacer, starter intake tended to be greater for calves fed enhanced starter. During the weaning period, enhanced starter promoted greater starter DM intake than the conventional starter. Over the 10-wk study, the average daily gain of BW (0.64, 0.74, and 0.80 kg/d) was greater for calves fed enhanced milk replacer with either starter and, for calves fed enhanced milk replacer, tended to be greater for calves fed high-CP starter. Rates of change in withers height, body length, and heart girth were greater for calves fed enhanced milk replacer but did not differ between starter CP concentrations. The postweaning BW for enhanced milk replacer treatments was greater for calves receiving the enhanced starter at wk 8 (73.7, 81.3, and 85.8 kg) and wk 10 (88.0, 94.9, and 99.9 kg). Starter CP content did not affect height, length, or heart girth within enhanced milk replacer treatments. Regression analysis showed that gain of BW during the first week postweaning (wk 7) increased with greater 3-d mean starter intake in the week before weaning. Starter with 25.5% CP (DM basis) provided modest benefits in starter intake (particularly around weaning) and growth for dairy calves in an enhanced early nutrition program compared with a conventional starter (19.6% CP).  相似文献   

2.
Three experiments were conducted to determine the effects of acidification of milk replacers containing soy protein concentrate on diet digestibility and growth of Holstein bull calves. In Experiment 1, six calves (6 wk old) were fed at 10% of BW/d either acidified milk replacer containing soy protein concentrate or untreated milk replacer containing soy protein concentrate. Replacers were reconstituted to 12.5% DM for 10-d adjustment and 4-d collection periods to determine digestibility and N balance. Digestibilities of DM, ether extract, and N were similar between treatments. Nitrogen retention and N retention as a percentage of that absorbed were higher for calves fed the acidified diet. In Experiment 2, 20 calves (1 wk old) were fed diets identical to those diets fed in Experiment 1 at 20% of BW/d for 4 wk. Calves were allowed to adjust to the diet for 5 d. Growth parameters were measured and amount of feed offered was adjusted weekly. Calves fed the untreated diet had higher daily weight gains, girth gains, height gains, and better feed utilization. In Experiment 3, 21 calves were fed either the aforementioned diets or a replacer based on milk proteins at 10% of BW/d (12.5% DM) for 4 wk. Growth parameters were measured and DM intakes were adjusted weekly. Growth and feed conversion were similar across diets. Replacers containing soy protein concentrate or large amounts of whey may need to be supplemented with additional methionine to maximize rate of gain.  相似文献   

3.
Feeding acidified or sweet milk replacer to dairy calves   总被引:1,自引:0,他引:1  
The objective of this study was to compare performance of calves fed acidified milk replacer or regular (sweet) milk replacer twice daily at 10% of BW. Thirty-seven female Holstein calves were fed replacers reconstituted to 12.5% DM for 4 wk, At 28 d, half of the amounts of milk replacer consumed during wk 4 were fed during wk 5 and calves weaned from replacer at d 35 age. A pelleted starter feed was offered for ad libitum access throughout the 42-d trial. Body weight was recorded at birth, d 3 of age, and weekly thereafter. Fecal consistency scores were recorded. Other parameters were measured on d 3 and 42. Average daily gains (d 3 to 42) for calves fed sweet and acidified milk replacers were .33 and .38 kg/d. Starter consumption was similar for both treatments. Calves fed acidified milk replacer (d 3 to 28) had a lower (1.4 vs. 1.6) fecal consistency score than those fed sweet milk replacer (scale of 1 to 4, 1 = normal and 4 = watery). Benefits of feeding acidified milk replacer at 10% of BW per day may be in reducing the incidence of some infectious scours, although further experiments are needed to verify this.  相似文献   

4.
Our objectives were to determine the effect of starter crude protein (CP) content on body composition of male Holstein calves from birth to 10 wk of age in an enhanced early nutrition program, and to compare the enhanced program to a conventional milk replacer program. Calves (n = 45) were purchased on the day of birth and assigned to a randomized block design. Eight calves were harvested at baseline and remaining calves were divided among the following 3 dietary treatments: (1) low rate of milk replacer [LMR; 20.6% CP, 21.7% fat; 1.25% of body weight (BW) as dry matter (DM)] plus conventional starter (CCS; 21.5% CP, DM basis); n = 11 calves; (2) high rate of milk replacer (HMR; 29.1% CP, 17.3% fat; 1.5% of BW as DM for wk 1, 2% of BW as DM wk 2–5, 1% of BW as DM wk 6) plus conventional starter; n = 12 calves; and (3) enhanced milk replacer (HMR) plus high-CP starter (HCS; 26% CP, DM basis); n = 14 calves. A subset of calves (n = 8) was harvested on d 2 to provide baseline data. Calves began treatments on d 2 or 3 of age. Calves were weaned at d 42. Starter was available ad libitum. Calves from each treatment were harvested at 5 (n = 18) and 10 (n = 19) wk of age and divided into 4 fractions: carcass; viscera; blood; and head, hide, feet, and tail. Fractions were analyzed for energy, CP, lipid, and ash. Average weekly starter intake did not differ between enhanced treatments. Gain of BW was greater for calves fed HMR than for LMR, but was unaffected by starter CP. Carcass weights at 5 wk were greater for HMR but did not differ between starter CP content. At 10 wk, carcass weights were heavier for HMR and had a greater percentage of empty BW for HMR + CCS than for HMR + HCS. At 10 wk, the weights of reticulorumen and liver were greater for calves fed HMR + HCS than for those fed HMR + CCS. At 5 wk, empty BW gain for HMR contained more water and less fat and ash than in calves fed LMR. At 10 wk, empty BW gain for calves fed HMR + HCS contained a greater percentage of water and less fat than for calves fed HMR + CCS. Plasma β-hydroxybutyrate was greater after weaning for calves fed HMR + HCS than for those fed HMR + CCS. After weaning, calves fed HMR had greater plasma total protein concentration than those fed LMR, and total protein was greater for calves fed HMR + HCS than those fed HMR + CCS. Plasma urea N was greater for calves fed HMR treatments, and postweaning was greater for calves fed HMR + HCS. A high-CP starter had minimal effect on empty BW gain before weaning, but after weaning it tended to increase mass of reticulorumen and liver.  相似文献   

5.
We determined the effects of calf milk replacers containing 0, 5, or 10% bovine plasma protein (PP), either without or with the supplemental amino acids (AA) Ile and Thr, on growth and health of male Holstein calves (n = 104) for 56 d. Milk replacers were formulated to contain 22% crude protein (CP), 20% fat, and 2.0% Lys. Milk replacers (12.5% solids) were fed at a rate of 1.5% of body weight (BW) on a dry matter basis during wk 1 and 1.75% of BW beginning on d 8. Starter was introduced on d 36 so that effects of PP and AA balance in milk replacers could be isolated. Intake, respiratory scores, and fecal scores were measured daily. Body weight and stature were measured weekly and blood serum samples were obtained during wk 4. Treatments had no effects on intakes of dry matter, CP, or metabolizable energy. During wk 6 and 8, BW was less as PP inclusion increased without AA supplementation compared with the other treatments. In wk 7, calves fed the higher level of PP without AA had lower BW than calves fed either the lower level of PP without supplemented AA or the higher inclusion of PP with supplemented AA. Average daily gain and gain:feed were lowest for calves fed the higher inclusion of PP without supplemented AA; heart girth in wk 7 was smallest for those calves. During the first 21 d, occurrence of scours was greater in calves fed the control milk replacer than in calves fed milk replacers containing the higher inclusion of PP either without or with supplemental AA. Occurrence of scours was also greater for the lower inclusion of PP compared with the higher inclusion of PP when AA were supplemented. Throughout the 56-d experiment, the chance of antibiotic treatment was greater for calves fed the control milk replacer than for all other treatments except the higher inclusion of PP without supplemental AA. Additionally, chance of antibiotic treatment was greater for the higher inclusion of PP without supplemental AA than for other milk replacers with PP. Calves fed treatments with the higher inclusion of PP had fewer days of scours than the controls. All milk replacers with PP, except the milk replacer containing higher PP without supplemental AA, had fewer days of treatment with antibiotics compared to the all-milk control. Inclusion of PP provided similar performance and improved health as long as milk replacers were balanced for Ile and Thr.  相似文献   

6.
Based on research in other species, inclusion of psyllium in milk replacer might improve nutrient utilization and gastrointestinal function in neonatal calves. Male Holstein calves were fed a milk replacer (22% crude protein, 20% fat) either without or with psyllium (1.1% of dry matter) from 2 d through 28 d of age. Milk replacer was reconstituted to 12.5% dry matter (DM) and fed at 12% of calf body weight (BW), adjusted weekly. Water was offered ad libitum but no starter was fed. Three calves per treatment were harvested weekly to sample digesta from the rumen, abomasum, jejunum, proximal colon, and distal colon. Mean daily intakes of water, DM, crude protein, and metabolizable energy did not differ between treatments. Average daily gain of BW did not differ between treatments. Digesta from the abomasum and colon of calves fed psyllium was more viscous than digesta from control calves. Mean retention time of digesta in the total digestive tract tended to be greater for calves supplemented with psyllium (9.7 vs. 8.4 h). Feces and digesta from the proximal and distal colon of calves fed psyllium had lower DM content than feces and digesta from control calves. Total-tract apparent digestibility of DM (92.8 vs. 94.1%) was lower for psyllium-fed calves, likely as an effect of the addition of the more poorly digestible psyllium; digestibilities of energy and ash also tended to be lower. The prefeeding plasma glucose concentration (10 h after previous feeding) tended to be greater for psyllium-fed calves but concentrations of nonesterified fatty acids, β-hydroxybutyrate, cholesterol, urea N, and total protein did not differ between treatments. Blood components did not differ between treatments at 2 h postfeeding. Inclusion of psyllium in the milk replacer of neonatal calves increased digesta viscosity and slowed passage of digesta through the gastrointestinal tract.  相似文献   

7.
This study compared conventional and intensified milk replacer feeding regimens on growth, intake, respiratory and fecal scores, vaccination response, and neutrophil mRNA levels. Holstein calves were randomly assigned to a 10-wk study on d 2 of life. Treatments were conventional (CON; n=8) and intensified (INT; n=7) milk replacer feeding programs. Conventional calves were fed a 20.8% crude protein and 21.0% fat milk replacer at 1.25% of birth body weight (BW) from wk 1 to 6 of life and 0.625% of birth BW during wk 7. A 29.3% crude protein and 16.2% fat milk replacer was fed to INT calves at 1.5% of birth BW during wk 1, 2% of current BW from wk 2 to 6, and 1% of current BW during wk 7. All calves were given milk replacer twice daily during wk 1 to 6, once daily during wk 7, and were weaned completely during wk 8. Calf starter intake was measured daily through wk 8. Body weight and withers height were measured weekly. Fecal and respiratory scores were recorded twice daily at feeding. Calves were vaccinated against ovalbumin at the end of wk 1, 3, and 5. Blood samples were collected at the end of wk 1, 3, 5, and 8 for analysis of serum anti-ovalbumin IgG concentration and for isolation of neutrophils. Quantitative PCR was used to measure neutrophil mRNA levels of 7 functionality genes. Treatment did not affect total DMI or anti-ovalbumin IgG response. Intensified milk replacer feeding increased average daily gain, protein intake, fat intake, and feed efficiency compared with the CON feeding program. Compared with CON calves, INT calves had greater fecal scores, indicating looser feces and greater respiratory scores, indicating more respiratory problems. Calves assigned to the INT treatment had increased neutrophil mRNA levels of L-selectin, and at wk 8, neutrophil cytosolic factor 1 was increased and toll-like receptor 4 tended to be increased compared with CON calves. This suggests greater activation of neutrophils in INT calves postweaning, but differences were relatively small and levels of the other 4 genes were unaffected. An INT milk replacer feeding program increased growth, fecal scores, and respiratory scores preweaning, increased mRNA levels of 2 neutrophil genes postweaning, and did not affect vaccination response.  相似文献   

8.
The objective of this study was to evaluate the effect of lactoferrin addition to milk replacer varying in crude protein (CP) on dry matter intake, growth, and days medicated. Thirty-four Holstein heifer calves were assigned to 4 treatments in a 2 × 2 factorial arrangement of treatments in a randomized complete block design. Treatments were as follows: 562 g daily of a nonmedicated conventional milk replacer (20% CP:20% fat) feeding regimen with or without 1 g of supplemental bovine lactoferrin (n = 9 for both treatments) or a nonmedicated intensified milk replacer feeding regimen (28% CP:20% fat) fed on a metabolizable energy basis (0.2 Mcal/kg BW0.75) from d 2 to 9, and at 0.27 Mcal/kg BW0.75 from d 10 to 42 with or without 1g supplemental bovine lactoferrin (n = 8 for both treatments). Calves were fed pelleted starter (25% CP) in 227.5-g increments beginning on d 2 and had free access to water. Calves remained on the study for 14 d postweaning. Dry matter intake was determined daily. Growth measurements were taken weekly. Blood samples were taken twice weekly for determination of blood urea N. On d 10 of life, calves were subjected to a xylose challenge. Calves on conventional treatments ate more starter preweaning, during weaning, and postweaning. Preweaning, intensively fed calves had higher dry matter intakes. Weights of intensified-fed calves were greater at weaning. Intensified milk replacer-fed calves had greater average daily gain preweaning and overall and higher gain:feed ratios preweaning, but conventionally fed calves had higher gain:feed ratios during weaning. Intensified milk replacer-fed calves had greater hip heights during weaning and postweaning and greater heart girths preweaning, weaning, and postweaning. Days medicated were greater preweaning and overall for intensified-fed calves. There were no differences among treatments for xylose absorption. Calves on conventional treatments had increased blood urea nitrogen concentrations preweaning. There were no effects of lactoferrin on any experimental variable. Intensified milk replacer-fed calves consumed less starter but had higher average daily gains overall and larger frames and greater BW than conventionally fed calves. An intensified milk replacer feeding regimen promotes faster growth during the preweaning period when compared with calves fed conventional treatments, but supplemental bovine lactoferrin was not beneficial under these experimental conditions.  相似文献   

9.
Eighty-one Holstein and Holstein-cross dairy calves fed calf milk replacer (CMR) were used to determine response to increasing amounts of supplemental fat during mild cold stress. Calves (n = 27) were randomly assigned to 1 of 3 treatments: (1) low fat [LF; 28% crude protein:15% fat milk replacer (28:15 MR)]; (2) medium fat [MF; 28:15 MR + 113 g/d of commercial fat supplement (FS)]; (3) high fat (HF; 28:15 MR + 227 g/d of FS). The MF and HF calves received FS from d 2 to 21, and all calves were fed LF from d 22 to 49. The CMR was fed at 1.4% of birth body weight (BBW) from d 1 to 10, at 1.8% of BBW from d 11 to 42, and at 0.9% of BBW from d 43 to 49. Calves were weaned on d 49 and remained in hutches until d 56. The CMR was reconstituted to 13% solids. Calves were fed a commercial starter grain (19.2% crude protein on a dry matter basis) ad libitum and offered warm water after CMR feeding. Calves were fed CMR twice daily at 0630 and 1730 h in hutches bedded with straw. Starter intake, CMR intake, and ambient temperature were measured daily, and body weight (BW), hip height, and body length were measured weekly. Data were analyzed using PROC MIXED in SAS (SAS Institute Inc., Cary, NC) as a randomized design with linear and quadratic contrasts. Calf BBW averaged 42.0 ± 1.0 kg, total serum protein averaged 5.8 ± 0.1 mg/dL, and birth ambient temperature averaged 5.0 ± 1.1°C. Feeding FS increased metabolizable energy intake (MEI) over maintenance but decreased efficiency of conversion of BW gain:MEI. Starter intake by LF calves was greatest until the beginning of weaning, after which starter intake was similar among treatments. Because of higher starter intake, total MEI was similar among treatments. Feed efficiency through d 49 was greater for calves fed MF and HF. Average daily gain during fat supplementation was greater for MF and HF than for LF. Lack of increase in BW gain and feed efficiency between MF and HF treatments indicated that HF did not result in advantages over MF. Supplementing fat to preweaned calves fed CMR increased BW gain and decreased starter intake through d 21 which had carryover effects on starter intake on d 49 and reduced hip height and tended to reduced withers height and body length by d 56. The addition of supplemental fat to LF, during mild cold stress, may result in a suboptimal ratio of crude protein to metabolizable energy in the CMR.  相似文献   

10.
Seventy-two Holstein calves were used to study the effect of feeding antibiotics or mannan oligosaccharides (MOS) in milk replacer. Calves were fed a 20% protein, 20% fat milk replacer containing antibiotics (400 g/ton neomycin + 200 g/ton oxytetracycline), MOS (4 g of Bio-Mos/d), or no additive (control) for 5 wk. Milk replacer was reconstituted to 12.5% dry matter and fed at 12% of birth weight during wk 1 and 14% of birth weight in wk 2 to 5. Fecal scores were monitored 3 times per week; body weight, heart girth, withers height, hip height, and hip width were measured at birth and weekly to 6 wk of age. Addition of MOS or antibiotics increased the probability of normal scores for fecal fluidity, scours severity, and fecal consistency as compared to control calves during the course of the study. Consumption of calf starter increased at a faster rate in calves fed MOS, and these calves consumed more calf starter after weaning (wk 6), than those fed antibiotic. No treatment differences in growth measures, total blood protein, or blood urea nitrogen were detected during the trial. Addition of MOS or antibiotics to milk replacer improved fecal scores in calves. Feed intake was improved in MOS-fed calves compared to antibiotic-fed calves, but this difference did not result in growth differences during the experimental period. The results suggest that antibiotics in milk replacers can be replaced with compounds such as mannan oligosaccharides to obtain similar calf performance.  相似文献   

11.
The objective was to determine whether increased energy and protein intake between 2 and 14 wk of age would increase growth rates of heifer calves without fattening. At 2 wk of age, Holstein heifer calves were assigned to 1 of 4 treatments in a 2 x 2 factorial arrangement with 2 levels of protein and energy intake (moderate [M]; high [H]) in period 1 (2 to 8 wk of age) by 2 levels of protein and energy intake (low [L]; high [H]) in period 2 (8 to 14 wk of age) to produce similar initial BW for all 4 treatments. Treatments were ML, MH, HL, and HH, indicating moderate or high energy and protein intake during the first period and low or high intake during the second period. The M diet consisted of a standard milk replacer (21.3% CP, 21.3% fat) fed at 1.1% of BW on a DM basis and a 16.5% CP grain mix fed at restricted intake to promote 400 g of average daily gain (ADG), whereas the L diet consisted only of the grain mix. The H diet consisted of a high-protein milk replacer (30.3% CP, 15.9% fat) fed at 2% of BW on a DM basis and a 21.3% CP grain mix available ad libitum. Calves were weaned gradually from milk replacer by 7 wk and slaughtered at 8 (n = 11) or 14 wk of age (n = 41). In periods 1 and 2, ADG and the gain:feed ratio were greater for calves fed the H diet. Calves fed the H diet were taller after both periods 1 and 2. No difference was observed in carcass composition at 8 wk, but at 14 wk calves fed MH and HH had less water and more fat than calves fed ML and HL. Plasma IGF-I concentrations were greatest for calves fed the H diet during either period. Plasma leptin concentrations were increased in calves fed the H diet during period 1 from 4 to 6 wk of age. Increasing energy and protein intake from 2 to 8 wk and 8 to 14 wk of age increased BW, withers height, and gain:feed ratio. Calves fed the H diet from 8 to 14 wk of age had more body fat than calves fed the L diet. Increased energy and protein intake can increase the rate of body growth of heifer calves and potentially reduce rearing costs.  相似文献   

12.
《Journal of dairy science》2019,102(12):11016-11025
Newborn Holstein male calves (n = 50) born on a single dairy farm were assigned randomly at birth to receive 3 feedings of 1.8 L of pooled maternal colostrum (MC) at 1, 6, and 12 h of age or 1 feeding of 500 g of a colostrum replacer reconstituted to 1.8 L at 1 h of age, followed by 2 feedings of 227 g of a commercial milk replacer (MR) reconstituted to 1.8 L at 6 and 12 h of age (CR). All feedings were administered by esophageal feeder. At 2 to 3 d of age, calves were transported to the experimental facility and assigned within colostrum group to receive 0.66 kg/d dry matter (DM) of MR to 39 d, and then 0.33 kg/d to 42 d (MRM) or 0.77 kg/d of MR DM to d 13, 1.03 kg/d for 22 d, and 0.51 kg/d for 7 d (MRH). The MR contained 25.8% crude protein and 17.6% crude fat (DM basis) and was based on whey proteins and lard as the primary fat source. Calf starter (21.7% crude protein, 15.7% neutral detergent fiber, 37.4% starch, DM basis) and water were available for ad libitum consumption throughout the 56-d study. Serum IgG and total protein were measured at 2 to 3 d of age. Intakes of MR and calf starter were monitored daily. Calf health and fecal scores were also monitored daily. Body weight was measured weekly, and hip width and body condition score were monitored every 2 wk. Digestion of DM, organic matter, crude protein, and ether extract were determined at 1 and 3 wk from 5 calves randomly selected within treatment and using chromic oxide as a digestibility marker added to the MR. Calves fed CR had lower serum IgG and total protein than calves fed MC. Also, calves fed CR grew more slowly, consumed less calf starter, and were less efficient to 56 d than calves fed MC. The number of days calves were treated with veterinary medications was higher when calves were fed CR. Calves fed MC-MRH gained more BW than other calves from 3 to 8 wk of age. Calves fed CR-MRH consumed less calf starter than other calves during wk 7 and 8. Digestion of nutrients at 1 and 3 wk of the study was unaffected by type of colostrum or level of MR fed and did not change from 1 to 3 wk. Over the first 2 mo of life, the calves fed MRH consumed less calf starter than calves fed MRM, but average daily gain or hip width change did not differ. One feeding of CR followed by 2 feedings of MR in the first 24 h likely reduced absorption of IgG from CR and contributed to differences in health and growth. Differences in animal performance observed in this study were unrelated to MR digestibility.  相似文献   

13.
Eighty-four Holstein calves were assigned at 2 d of age to one of three treatments: 1) control with no additives; 2) 10 g of a mixed microbial concentrate containing Lactobacillus acidophilus, Lactobacillus lactis, and Bacillus subtilis; or 3) 10 g of a B. subtilis concentrate. The microbial concentrates were mixed with milk replacer during the a.m. feeding. The milk replacer was offered twice daily at 5% BW per feeding; the reconstituted replacer contained 12.5% DM. Volume of replacer fed was based on initial weight of calf and held constant until weaning. Water and starter ration were offered for ad libitum intake throughout the trial. Calves were weaned abruptly at 30 d of age and received only water and starter from d 31 to 44. General health and performance of all calves were good. Although differences in weight gain and feed efficiency were not significant, the B. subtilis concentrate tended to have a positive effect on feed efficiency during wk 1 to 4 and on immediate postweaning gain. A higher fecal bacilli count at 6 wk in calves fed the microbial concentrates may be related to their tendency for improved gain during d 31 to 44, the immediate postweaning period.  相似文献   

14.
Fermentable fibers such as psyllium increase volatile fatty acid (VFA) concentrations in the lower digestive tract and increase the gastrointestinal tract (GIT) mass of many mammals. We reasoned that psyllium inclusion in milk replacer might produce similar effects in neonatal dairy calves, which could lead to improved growth and health. Male Holstein calves were fed a milk replacer (22% crude protein, 20% fat) either without or with psyllium (1.1% of dry matter, DM) from 2 d through 28 d of age. Milk replacer was reconstituted to 12.5% DM and fed at 12% of calf body weight, adjusted weekly. Water was offered ad libitum but no starter was fed. Three calves per treatment were harvested weekly to sample digesta from the reticulo-rumen, abomasum, jejunum, proximal colon, and distal colon, and to determine length and mass of GIT components. Psyllium in milk replacer increased the proportion of butyrate in reticulo-rumen contents from 2.4 to 3.2% of total but did not affect total VFA concentrations. Total VFA concentrations were very low in the jejunum but psyllium tended to increase total VFA, acetate, and valerate concentrations; valerate accounted for 15.9 and 16.7% of total VFA (molar basis) for control and psyllium calves, respectively. Psyllium increased total VFA concentrations in the proximal and distal colon by 104.4 and 45.6%, respectively, but had little effect on the profile of VFA. Psyllium in milk replacer increased populations of bifidobacteria (from 9.7 to 10.3 log10 cfu/g of DM) and lactobacilli (from 8.2 to 9.4 log10 cfu/g of DM) in the reticulo-rumen, but did not affect populations in jejunum or colon. Calves fed psyllium had 12.0% greater total GIT mass and 9.4% greater GIT as a percentage of body weight. Psyllium tended to increase mass of the reticulo-rumen and significantly increased mass of duodenum (34.2%), jejunum (14.5%), and colon (14.6%). Density of intestinal tissues from calves fed psyllium-supplemented milk replacer was 25.9% greater in the jejunum and 25.3% greater in the ileum, and tended to be greater in duodenum and colon than tissue from control calves. Supplementation of psyllium to milk replacer increased fermentation in the colon, mass of the total GIT, and populations of bifidobacteria and lactobacilli in the reticulo-rumen.  相似文献   

15.
Glutamine, an important fuel and biosynthetic precursor in intestinal epithelial cells, helps maintain intestinal integrity and function when supplemented to the diet of many species. The hypothesis tested here was that glutamine supplementation would overcome the decreased average daily gain (ADG) and altered intestinal morphology caused by milk replacer containing soy protein concentrate (SPC). Holstein calves (9 male and 1 freemartin female per treatment) were assigned to diets of 1) all-milk-protein (from whey proteins) milk replacer, 2) milk replacer with 60% milk protein replacement from SPC, and 3) SPC milk replacer as in diet 2 plus 1% (dry basis) l-glutamine. Milk replacers were reconstituted to 12.5% solids and were fed at 10% of body weight from d 3 to 10 of age, and at 12% of body weight (adjusted weekly) from d 10 through 4 wk of age. No dry feed (starter) was fed, but water was freely available. Glutamine was added at each feeding to reconstituted milk replacer. Five calves from each treatment were slaughtered at the end of wk 4 for measurements of intestinal morphology. The ADG was greater for calves fed the all-milk control than for those fed SPC; glutamine did not improve ADG (0.344, 0.281, and 0.282 kg/d for diets 1 to 3, respectively). Intake of protein was adequate for all groups and did not explain the lower growth for calves fed SPC. Villus height and crypt depth did not differ among treatments in the duodenum. In the jejunum, villus height (713, 506, and 464 μm, for diets 1 to 3, respectively) and crypt depth (300, 209, and 229 μm, respectively) were greater for calves fed all milk protein than for either SPC group. In the ileum, villus height was greater for calves fed all milk than for either soy group (532, 458, and 456 μm), whereas crypt depth tended to be greater (352, 301, and 383 μm for diets 1 to 3, respectively), and the villus to crypt ratio was lower for calves supplemented with glutamine than for those fed SPC alone. Urea N concentration in plasma was greater for calves supplemented with glutamine than for those fed SPC alone, indicating that glutamine was at least partially catabolized. Supplemental l-glutamine did not improve growth or intestinal morphology of calves fed milk replacer containing SPC.  相似文献   

16.
The objective was to determine the relationships between early-life parameters [including average daily gain (ADG), body weight (BW), milk replacer intake, starter intake, and birth season] and the first-lactation performance of Holstein cows. We collected data from birth years 2004 to 2012 for 2,880 Holstein animals. Calves were received from 3 commercial dairy farms and enrolled in 37 different calf research trials at the University of Minnesota Southern Research and Outreach Center from 3 to 195 d. Upon trial completion, calves were returned to their respective farms. Milk replacer options included varying protein levels and amounts fed, but in the majority of studies, calves were fed a milk replacer containing 20% crude protein and 20% fat at 0.57 kg/calf daily. Most calves (93%) were weaned at 6 wk. Milk replacer dry matter intake, starter intake, ADG, and BW at 6 wk were 21.5 ± 2.2 kg, 17.3 ± 7.3 kg, 0.53 ± 0.13 kg/d, and 62.4 ± 6.8 kg, respectively. Average age at first calving and first-lactation 305-d milk yield were 715 ± 46.5 d and 10,959 ± 1,527 kg, respectively. We conducted separate mixed-model analyses using the REML model-fitting protocol of JMP (SAS Institute Inc., Cary, NC) to determine the effect of early-life BW or ADG, milk replacer and starter intake, and birth season on first-lactation 305-d milk, fat, and true protein yield. Greater BW and ADG at 6 wk resulted in increased first-lactation milk and milk component yields. Intake of calf starter at 8 wk had a significant positive relationship with first-lactation 305-d yield of milk and milk components. Milk replacer intake, which varied very little in this data set, had no effect on first-lactation 305-d yield of milk and milk components. Calves born in the fall and winter had greater starter intake, BW, and ADG at 8 wk. However, calves born in the summer had a higher 305-d milk yield during their first lactation than those born in the fall and winter. Improvements were modest, and variation was high, suggesting that additional factors not accounted for in these analyses affected first-lactation performance.  相似文献   

17.
The objectives of this study were to determine the effects of the weaning transition and supplemental rumen-protected butyrate on subacute ruminal acidosis, feed intake, and growth parameters. Holstein bull calves (n = 36; age = 10.7 ± 4.1 d; ± standard deviation) were assigned to 1 of 4 treatment groups: 2 preweaning groups, animals fed milk replacer only (PRE-M) and those fed milk replacer, calf starter, and hay (PRE-S); and 2 postweaning groups, animals fed milk replacer, calf starter, and hay without supplemental rumen-protected butyrate (POST-S) or with supplemental rumen-protected butyrate at a rate of 1% wt/wt during the 2-wk weaning transition (POST-B). Milk replacer was provided at 1,200 g/d; starter, water, and hay were provided ad libitum. Weaning took place over 14 d by reducing milk replacer provision to 900 g/d in wk 7, 600 g/d in wk 8, and 0 g/d in wk 9. Rumen pH was measured continuously for 7 d during wk 6 for PRE-S and PRE-M and during wk 9 for POST-S and POST-B. After rumen pH was measured for 7 d, calves were euthanized, and rumen fluid was sampled and analyzed for volatile fatty acid (VFA) profile. Individual feed intake was recorded daily, whereas, weekly, body weights were recorded, and blood samples were collected. Compared with PRE-M, PRE-S calves tended to have a greater total VFA concentration (35.60 ± 11.4 vs. 11.90 ± 11.8 mM) but mean rumen pH was unaffected (6.25 ± 0.22 vs. 6.17 ± 0.21, respectively). Between PRE-S (wk 6) and POST-S (wk 9), calf starter intake increased (250 ± 219 vs. 2,239 ± 219 g/d), total VFA concentrations increased (35.6 ± 11.4 vs. 154.4 ± 11.8 mM), but mean rumen pH was unaffected (6.25 ± 0.22 vs. 6.40 ± 0.22, respectively). Compared with POST-S, POST-B calves had greater starter intake in wk 7, 8, and 9, but POST-B tended to have lower total VFA concentration (131.0 ± 11.8 vs. 154.4 ± 11.8 mM) and lower mean ruminal pH (5.83 ± 0.21 vs. 6.40 ± 0.22). In conclusion, the weaning transition does not appear to affect rumen pH and VFA profile, but supplementing rumen-protected butyrate during the weaning transition increased starter intake and average daily gain. Further, these data suggest that the ability of the rumen to manage rumen pH changes fundamentally postweaning. Why weaned calves with lower rumen pH can achieve higher calf starter intakes is unclear; these data suggest the effect of rumen pH on feed intake differs between calves and cows.  相似文献   

18.
Angora kids were blocked by birth weight and sex and assigned randomly to goat milk or acidified milk replacer. Daily milk intake, weekly BW, and heart girth measurements, and blood parameters (packed cell volume, total protein, glucose, and NEFA) were monitored at 3 d (initial) and at 4, 6, 8, and 9 wk of age. Both groups were fed their respective milks for ad libitum intake for 6 wk and then reduced to 75, 50, 25, and 0% of wk-6 intake during wk 7, 8, 9, and 10, respectively. Solid feed (20% CP and 3.1. Mcal of metabolizable energy/kg of DM) was provided for ad libitum intake starting on wk 3. Pretreatment BW (average 2.4 kg) and blood parameters were similar for milk and replacer groups. Packed cell volume (21.8 and 34.2%), total protein (50.3 and 46.6 g/L), and NEFA (.52 and .69 meq/L) for goat milk and acidified milk replacer groups, respectively, were affected by dietary treatment. Final BW (average 10.5 kg) and mean plasma glucose concentration (84 to 88 mg/dl) were similar between treatments; however, kids fed goat milk produced more mohair (13.8%) than those fed acidified milk replacer. Despite physiological differences, acidified milk replacer can be used successfully to raise Angora kids.  相似文献   

19.
The objective of this study was to determine if increasing the energy and protein intake of heifer calves would affect growth rates, age at puberty, age at calving, and first lactation milk yield. A second objective was to perform an economic analysis of this feeding program using feed costs, number of nonproductive days, and milk yield data. Holstein heifer calves born at the Michigan State Dairy Cattle Teaching and Research Center were randomly assigned to 1 of 2 dietary treatments (n = 40/treatment) that continued from 2 d of age until weaning at 42 d of age. The conventional diet consisted of a standard milk replacer [21.5% crude protein (CP), 21.5% fat] fed at 1.2% of body weight (BW) on a dry matter basis and starter grain (19.9% CP) to attain 0.45 kg of daily gain. The intensive diet consisted of a high-protein milk replacer (30.6% CP, 16.1% fat) fed at 2.1% of BW on a dry matter basis and starter grain (24.3% CP) to achieve 0.68 kg of daily gain. Calves were gradually weaned from milk replacer by decreasing the amount offered for 5 and 12 d before weaning for the conventional and intensive diets, respectively. All calves were completely weaned at 42 d of age and kept in hutches to monitor individual starter consumption in the early postweaning period. Starting from 8 wk of age, heifers on both treatments were fed and managed similarly for the duration of the study. Body weight and skeletal measurements were taken weekly until 8 wk of age, and once every 4 wk thereafter until calving. Calves consuming the intensive diet were heavier, taller, and wider at weaning. The difference in withers height and hip width was carried over into the early post-weaning period, but a BW difference was no longer evident by 12 wk of age. Calves fed the intensive diet were younger and lighter at the onset of puberty. Heifers fed the high-energy and protein diet were 15 d younger at conception and 14 d younger at calving than heifers fed the conventional diet. Body weight after calving, daily gain during gestation, withers height at calving, body condition score at calving, calving difficulty score, and calf BW were not different. Energy-corrected, age-uncorrected 305-d milk yield was not different, averaging 9,778 kg and 10,069 kg for heifers fed the conventional and intensive diets, respectively. However, removing genetic variation in milk using parent average values as a covariate resulted in a tendency for greater milk from heifers fed the intensive diet. Preweaning costs were higher for heifers fed the intensive diet. However, total costs measured through first lactation were not different. Intensified feeding of calves can be used to decrease age at first calving without negatively affecting milk yield or economics.  相似文献   

20.
Thirty-nine bull calves between 6 and 9 d of age, were assigned to either baseline slaughter or 1 of 4 diets to determine the influence of dietary fat and protein content, at 2 levels of intake, on growth and body composition changes. Calves were assigned to the following diets a 28.5% protein and 16.4% fat milk replacer [MR; 29/16 (n = 9)], 27.3% protein and 33.4% fat MR [27/33 (n = 8)], 20.6% protein and 20.6% fat MR [20/20 (8)], or whole milk [WM (n = 8)]. Calves fed 27/33, 29/16, and WM received 180 g/d of CP to support 650 g of ADG based on predictions from the 2001 NRC. Calves were fed 3 times daily for 4 wk. Weight, hip height, wither height, heart girth, and body length were measured weekly. Weekly plasma samples were analyzed for plasma urea nitrogen, nonesterified fatty acids, and glucose. A subset of calves from each treatment was killed [29/16 (n = 7), 27/33 (n = 6), 20/20 (n = 6), and WM (n = 5)] at the end of wk 4 of treatment; processed for whole-body analysis of fat, protein, ash, and DM; and compared with baseline slaughter calves to estimate composition of empty BW gain. Calves did not differ in average weekly scour score or medication days. Feed efficiency and ADG were greatest for calves fed WM and least for calves fed 20/20; calves fed 29/16 and 27/33 did not differ. Calves fed 27/33 or WM had the greatest % body fat and gained more grams of fat than calves fed other diets. Calves fed 29/16 or 20/20 had similar % fat in empty body as baseline. Differences in % CP, % ash, or % water in empty body and empty BW gain were not detected. Calves fed 27/33 had a trend toward higher NEFA in wk 1 and 2 than calves fed 29/16 or WM. Growth of calves fed 27/33 and 29/16 were similar except that calves fed 29/16 had lower body fat % than calves fed 27/33. Calves on all diets gained less than predicted by the 2001 NRC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号