首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In wireless sensor networks (WSNs), a lot of sensory traffic with redundancy is produced due to massive node density and their diverse placement. This causes the decline of scarce network resources such as bandwidth and energy, thus decreasing the lifetime of sensor network. Recently, the mobile agent (MA) paradigm has been proposed as a solution to overcome these problems. The MA approach accounts for performing data processing and making data aggregation decisions at nodes rather than bring data back to a central processor (sink). Using this approach, redundant sensory data is eliminated. In this article, we consider the problem of calculating near-optimal routes for MAs that incrementally fuse the data as they visit the nodes in a WSN. The order of visited nodes (the agent’s itinerary) affects not only the quality but also the overall cost of data fusion. Our proposed heuristic algorithm adapts methods usually applied in network design problems in the specific requirements of sensor networks. It computes an approximate solution to the problem by suggesting an appropriate number of MAs that minimizes the overall data fusion cost and constructs near-optimal itineraries for each of them. The performance gain of our algorithm over alternative approaches both in terms of cost and task completion latency is demonstrated by a quantitative evaluation and also in simulated environments through a Java-based tool.  相似文献   

2.
Sensor nodes are powered by battery and have severe energy constraints. The typical many‐to‐one traffic pattern causes uneven energy consumption among sensor nodes, that is, sensor nodes near the base station or a cluster head have much heavier traffic burden and run out of power much faster than other nodes. The uneven node energy dissipation dramatically reduces sensor network lifetime. In a previous work, we presented the chessboard clustering scheme to increase network lifetime by balancing node energy consumption. To achieve good performance and scalability, we propose to form a heterogeneous sensor network by deploying a few powerful high‐end sensors in addition to a large number of low‐end sensors. In this paper, we design an efficient routing protocol based on the chessboard clustering scheme, and we compute the minimum node density for satisfying a given lifetime constraint. Simulation experiments show that the chessboard clustering‐based routing protocol balances node energy consumption very well and dramatically increases network lifetime, and it performs much better than two other clustering‐based schemes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Mobile ad hoc network consists of a group of mobile nodes that can communicate with each other without any infrastructure. Clustering of the mobile nodes ensures efficient use of available bandwidth and high network throughput. Various clustering schemes are developed to improve the energy efficiency and lifetime of the network. However, there is an increase in the energy consumption with the increase in the number of clusters for forwarding data. This paper presents an energy‐efficient clustering approach for collaborative data forwarding in mobile ad hoc network. The cluster head (CH) is selected based on the processing capability of the nodes and link connection metrics. The CH receives the data from the server and forwards the data to the member nodes at a corresponding data rate of the nodes. Data offloading technique manages the data traffic in the network. The CH rejoining approach enables load balancing in the network. The proposed clustering approach achieves a significant reduction in the energy consumption and data traffic and improvement in the throughput rate through stable routing.  相似文献   

4.
The energy consumption is a key design criterion for the routing protocols in wireless sensor networks (WSN). Some of the conventional single path routing schemes may not be optimal to maximize the network lifetime and connectivity. Thus, multipath routing schemes is an optimal alternative to extend the lifetime of WSN. Multipath routing schemes distribute the traffic across multiple paths instead of routing all the traffic along a single path. In this paper, we propose a multipath Energy-Efficient data Routing Protocol for wireless sensor networks (EERP). The latter keeps a set of good paths and chooses one based on the node state and the cost function of this path. In EERP, each node has a number of neighbours through which it can route packets to the base station. A node bases its routing decision on two metrics: state and cost function. It searches its Neighbours Information Table for all its neighbours concerned with minimum cost function. Simulation results show that our EERP protocol minimizes and balances the energy consumption well among all sensor nodes and achieves an obvious improvement on the network lifetime.  相似文献   

5.
Wireless sensor networks (WSNs) are constrained by limited node (device) energy, low network bandwidth, high communication overhead and latency. Data aggregation alleviates the constraints of WSN. In this paper, we propose a multi-agent based homogeneous temporal data aggregation and routing scheme based on fish bone structure of WSN nodes by employing a set of static and mobile agents. The primary components of fishbone structure are backbone and ribs connected to both sides of a backbone. A backbone connects a sink node and one of the sensor nodes on the boundary of WSN through intermediate sensor nodes. Our aggregation scheme operates in the following steps. (1) Backbone creation and identifying master centers (or nodes) on it by using a mobile agent based on parameters such as Euclidean distance, residual energy, backbone angle and connectivity. (2) Selection of local centers (or nodes) along the rib of a backbone connecting a master center by using a mobile agent. (3) Local aggregation process at local centers by considering nodes along and besides the rib, and delivering to a connected master center. (4) Master aggregation process along the backbone from boundary sensor node to the sink node by using a mobile agent generated by a boundary sensor node. The mobile agent aggregates data at visited master centers and delivers to the sink node. (5) Maintenance of fish bone structure of WSN nodes. The performance of the scheme is simulated in various WSN scenarios to evaluate the effectiveness of the approach by analyzing the performance parameters such as master center selection time, local center selection time, aggregation time, aggregation ratio, number of local and master centers involved in the aggregation process, number of isolated nodes, network lifetime and aggregation energy. We observed that our scheme outperforms zonal based aggregation scheme.  相似文献   

6.
无线传感网络(WSN)路由协议中,分簇路由具有拓扑管理方便、能量高效和数据融合简单等优点,成为当前重点研究的路由技术。通过研究各种环境下的移动传感器网络,有效地降低能耗则是研究移动无线传感器网络的重要目的之一。针对无线传感网络中移动性问题,基于LEACH协议,利用移动传感器网络中节点距离、速度和剩余能量等因素提出了能量高效的移动分簇路由算法。实验结果表明此算法能够较好地支持节点移动,从而降低网络能耗,延长网络生存时间。  相似文献   

7.
For the energy limited wireless sensor networks, the critical problem is how to achieve the energy efficiency. Many attackers can consume the limited network energy, by the method of capturing some legal nodes then control them to start DoS and flooding attack, which is difficult to be detected by only the classic cryptography based techniques with common routing protocols in wireless sensor networks (WSNs). We argue that under the condition of attacking, existing routing schemes are low energy-efficient and vulnerable to inside attack due to their deterministic nature. To avoid the energy consumption caused by the inside attack initiated by the malicious nodes, this paper proposes a novel energy efficiency routing with node compromised resistance (EENC) based on Ant Colony Optimization. Under our design, each node computes the trust value of its 1-hop neighbors based on their multiple behavior attributes evaluation and builds a trust management by the trust value. By this way, sensor nodes act as router to achieve dynamic and adaptive routing, where the node can select much energy efficiency and faithful forwarding node from its neighbors according to their remaining energy and trust values in the next process of data collection. Simulation results indicate that the established routing can bypass most compromised nodes in the transmission path and EENC has high performance in energy efficiency, which can prolong the network lifetime.  相似文献   

8.

Recently, Internet is moving quickly toward the interaction of objects, computing devices, sensors, and which are usually indicated as the Internet of things (IoT). The main monitoring infrastructure of IoT systems main monitoring infrastructure of IoT systems is wireless sensor networks. A wireless sensor network is composed of a large number of sensor nodes. Each sensor node has sensing, computing, and wireless communication capability. The sensor nodes send the data to a sink or a base station by using wireless transmission techniques However, sensor network systems require suitable routing structure to optimizing the lifetime. For providing reasonable energy consumption and optimizing the lifetime of WSNs, novel, efficient and economical schemes should be developed. In this paper, for enhancing network lifetime, a novel energy-efficient mechanism is proposed based on fuzzy logic and reinforcement learning. The fuzzy logic system and reinforcement learning is based on the remained energies of the nodes on the routes, the available bandwidth and the distance to the sink. This study also compares the performance of the proposed method with the fuzzy logic method and IEEE 802.15.4 protocol. The simulations of the proposed method which were carried out by OPNET (Optimum Network performance) indicated that the proposed method performed better than other protocols such as fuzzy logic and IEEE802.15.4 in terms of power consumption and network lifetime.

  相似文献   

9.
Network lifetime maximization is challenging particularly for large-scale wireless sensor networks. The sensor nodes near the sink node tend to suffer high energy consumption due to heavy traffic relay operations, becoming vulnerable to energy depletion. The rationale of the sink mobility approach is that as the sink node moves around, such risk of energy depletion at some nodes can be alleviated. In this paper, we first obtain the optimal mobile sink sojourning pattern by solving a linear programming model and then we mathematically analyze why the optimal solution exhibits such sojourning pattern. We use the insights from this analysis to design a simple practical heuristic algorithm for sink mobility, which utilizes only local information. Our heuristic is very different from the existing algorithms which often use the traffic volume as the main decision factor, in that we consider the variance of residual energy of neighboring sensor nodes. The simulation results show that our scheme achieves near-optimal network lifetime even with the relatively low moving speed of the mobile sink.  相似文献   

10.
Internet of Things (IoT) has got significant popularity among the researchers' community as they have been applied in numerous application domains. Most of the IoT applications are implemented with the help of wireless sensor networks (WSNs). These WSNs use different sensor nodes with a limited battery power supply. Hence, the energy of the sensor node is considered as one of the primary constraints of WSN. Besides, data communication in WSN dissipates more energy than processing the data. In most WSNs applications, the sensed data generated from the same location sensor nodes are identical or time-series/periodical data. This redundant data transmission leads to more energy consumption. To reduce the energy consumption, a data reduction strategy using neural adaptation phenomenon (DR-NAP) has been proposed to decrease the communication energy in routing data to the BS in WSN. The neural adaptation phenomenon has been utilized for designing a simple data reduction scheme to decrease the amount of data transmitted. In this way, the sensor node energy is saved and the lifetime of the network is enhanced. The proposed approach has been implanted in the existing gravitational search algorithm (GSA)-based clustered routing for WSN. The sensed data are transmitted to CH and BS using DR-NAP. Real sensor data from the Intel Berkeley Research lab have been used for conducting the experiments. The experiment results show 47.82% and 51.96% of improvement in network lifetime when compared with GSA-based clustered routing and clustering scheme using Canada Geese Migration Principle (CS-CGMP) for routing, respectively.  相似文献   

11.
Energy consumption has been the focus of many studies on Wireless Sensor Networks (WSN). It is well recognized that energy is a strictly limited resource in WSNs. This limitation constrains the operation of the sensor nodes and somehow compromises the long term network performance as well as network activities. Indeed, the purpose of all application scenarios is to have sensor nodes deployed, unattended, for several months or years.This paper presents the lifetime maximization problem in “many-to-one” and “mostly-off” wireless sensor networks. In such network pattern, all sensor nodes generate and send packets to a single sink via multi-hop transmissions. We noticed, in our previous experimental studies, that since the entire sensor data has to be forwarded to a base station via multi-hop routing, the traffic pattern is highly non-uniform, putting a high burden on the sensor nodes close to the base station.In this paper, we propose some strategies that balance the energy consumption of these nodes and ensure maximum network lifetime by balancing the traffic load as equally as possible. First, we formalize the network lifetime maximization problem then we derive an optimal load balancing solution. Subsequently, we propose a heuristic to approximate the optimal solution and we compare both optimal and heuristic solutions with most common strategies such as shortest-path and equiproportional routing. We conclude that through the results of this work, combining load balancing with transmission power control outperforms the traditional routing schemes in terms of network lifetime maximization.  相似文献   

12.
Extending the Lifetime of Wireless Sensor Networks Through Mobile Relays   总被引:1,自引:0,他引:1  
We investigate the benefits of a heterogeneous architecture for wireless sensor networks (WSNs) composed of a few resource rich mobile relay nodes and a large number of simple static nodes. The mobile relays have more energy than the static sensors. They can dynamically move around the network and help relieve sensors that are heavily burdened by high network traffic, thus extending the latter's lifetime. We first study the performance of a large dense network with one mobile relay and show that network lifetime improves over that of a purely static network by up to a factor of four. Also, the mobile relay needs to stay only within a two-hop radius of the sink. We then construct a joint mobility and routing algorithm which can yield a network lifetime close to the upper bound. The advantage of this algorithm is that it only requires a limited number of nodes in the network to be aware of the location of the mobile relay. Our simulation results show that one mobile relay can at least double the network lifetime in a randomly deployed WSN. By comparing the mobile relay approach with various static energy-provisioning methods, we demonstrate the importance of node mobility for resource provisioning in a WSN.   相似文献   

13.
Radio range adjustment for energy efficient wireless sensor networks   总被引:2,自引:0,他引:2  
In wireless ad hoc sensor networks, energy use is in many cases the most important constraint since it corresponds directly to operational lifetime. Topology management schemes such as GAF put the redundant nodes for routing to sleep in order to save the energy. The radio range will affect the number of neighbouring nodes, which collaborate to forward data to a base station or sink. In this paper we study a simple linear network and deduce the relationship between optimal radio range and traffic. We find that half of the power can be saved if the radio range is adjusted appropriately compared with the best case where equal radio ranges are used.  相似文献   

14.
为了解决当前移动无线传感网数据传输中存在的同步寻址困难以及节点间功率交互难以均衡化的问题,提出了一种新的移动无线传感网数据传输算法。首先,采取广播机制实现同步控制分组传输,降低同步流量对寻址过程造成的压力;随后使用区域节点流量阀控制机制,且通过侦听方式记录并获取sink节点—区域节点链路间的数据流量,进一步采取流量—链路均衡方式促进流量均衡化;最后,通过基于轮数—sink 链路周期抖动筛选方式确认受限带宽,减少带宽受限导致的传输故障。仿真实验表明,与BLT-NB2R算法、NLSC算法和HT2C算法相比,所提出的算法可改善数据传输带宽,降低数据分组丢失频率,能够较好地满足实践需求。  相似文献   

15.
In the wireless sensor networks, high efficient data routing for the limited energy resource networks is an important issue. By introducing Ant-colony algorithm, this paper proposes the wireless sensor network routing algorithm based on LEACH. During the construction of sensor network clusters, to avoid the node premature death because of the energy consumption, only the nodes whose residual energy is higher than the average energy can be chosen as the cluster heads. The method of repeated division is used to divide the clusters in sensor networks so that the numbers of the nodes in each cluster are balanced. The basic thought of ant-colony algorithm is adopted to realize the data routing between the cluster heads and sink nodes, and the maintenance of routing. The analysis and simulation showed that the proposed routing protocol not only can reduce the energy consumption, balance the energy consumption between nodes, but also prolong the network lifetime.  相似文献   

16.
基于移动机器人无线传感网络数据采集方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对传统的无线传感网络数据采集方法存在的能耗高、网络延迟时间长的问题,文章提出了一种基于移动机器人无线传感网络数据采集方法,此方法的基本思想是,首先选择一个合适的移动机器人作为族头,一定周期内的相邻节点的平均剩余能量会被移动机器人检测出来,同时整个网络节点的平均剩余能量也能被检测出来,移动机器人是否移动由这两个参数的大小决定的。随着机器人的移动,节点的路由也会相应的更新,然后重新选择移动机器人族头。测试结果表明,此方法能很好的降低传输延迟和节点能量消耗。  相似文献   

17.
Sensor node energy conservation is the primary design parameters in wireless sensor networks (WSNs). Energy efficiency in sensor networks directly prolongs the network lifetime. In the process of route discovery, each node cooperates to forward the data to the base station using multi‐hop routing. But, the nodes nearer to the base station are loaded more than the other nodes that lead to network portioning, packet loss and delay as a result nodes may completely loss its energy during the routing process. To rectify these issues, path establishment considers optimized substance particle selection, load distribution, and an efficient slot allocation scheme for data transmission between the sensor nodes in this paper. The selection of forwarders and conscious multi‐hop path is selected based on the route cost value that is derived directly by taking energy, node degree and distance as crucial metrics. Load distribution based slot allocation method ensures the balance of data traffic and residual energy of the node in areal‐time environment. The proposed LSAPSP simulation results show that our algorithm not only can balance the real‐time environment load and increase the network lifetime but also meet the needs of packet loss and delay.  相似文献   

18.
Event triggered data aggregation and routing minimizes the amount of energy and bandwidth required to transmit the data from the event affected area. This paper proposes a Wheel based Event Triggered data aggregation and routing (WETdar) scheme in Wireless Sensor Networks (WSNs) by employing a set of static and mobile agents. A wheel with spokes is constructed by WSN nodes around an event node (a sensor node where an event occurs). Gathering and aggregation of the information is performed along the spokes of a wheel in Spoke Aggregator (SA) nodes and sent to an event node, which routes to a sink node. Spoke generation and identification of SA nodes along the spokes is performed by using a mobile agent, based on parameters such as Euclidean distance, residual energy, spoke angle and connectivity. Mobile agent and its clones discover multiple paths to a sink node from an event node. The scheme is simulated in various WSN scenarios to evaluate the effectiveness of the approach. The performance parameters analyzed are number of SAs, SA selection time, aggregation time, aggregation energy, energy consumption, number of isolated nodes and network life time. We observed that proposed scheme outperforms as compared to the existing aggregation scheme.  相似文献   

19.
基于OLSR的Ad Hoc网络功率意识路由协议   总被引:2,自引:1,他引:1  
针对Ad Hoc网络能量受限的特点,提出了一种基于OLSR的功率意识路由协议.该协议的路由选择策略考虑节点发射功率和剩余寿命,同时尽量选择寿命较长的节点作为MPR节点.针对网络流量的突发性和随机性,采用基于能量流失率的节点寿命预测模型.在兼顾传统路由指标之外,主要考虑数据分组传输成功率和网络维持时间等参数.仿真结果显示,该算法有效地提高了网络吞吐量,延长了网络寿命.  相似文献   

20.
在传感器节点受到能量和带宽严重制约的情况下,如何合理、有效地利用有限的资源来采集有效、可信的数据,成为当前无线传感器网络(Wireless Sensor Network,WSN)研究的热点问题之一。在分析了大量WSN感知数据的基础上,利用时间序列对数据进行建模处理,得出了适合WSN的数据处理模型ARMA(1,1),同时利用基于移动Agent的中间件技术,提出了基于ARMA的无线传感器网络可信数据采集方法。理论和实验结果表明,该方法可保证采集数据的高度可信,同时显著提高了网络的整体性能,有效的减少网络的能耗,延长了网络的生命周期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号