首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of flow releases (daily during spring and four times weekly during summer) from a small impoundment on macroinvertebrate assemblages in the lower Indian River and upper Hudson River of northern New York were assessed during the summers of 2005 and 2006. Community indices, feeding guilds, dominant species and Bray–Curtis similarities at three sites on the Indian River, below a regulated impoundment, were compared with those at four control sites on the Cedar River, below a run‐of‐the‐river impoundment of comparable size. The same indices at four less‐likely affected sites on the Hudson River, below the mouth of the Indian River, were compared with those at an upstream control site on the Hudson River. Results show that the function and apparent health of macroinvertebrate communities were generally unaffected by atypical flow regimes and/or altered water quality at study reaches downstream from both dams in the Indian, Cedar and Hudson Rivers. The lentic nature of releases from both impoundments, however, produced significant changes in the structure of assemblages at Indian and Cedar River sites immediately downstream from both dams, moderate effects at two Indian River sites 2.4 and 4.0 km downstream from its dam, little or no effect at three Cedar River sites 7.2–34.2 km downstream from its dam, and no effect at any Hudson River site. Bray–Curtis similarities indicate that assemblages did not differ significantly among sites within similar impact categories. The paucity of scrapers at all Indian River sites, and the predominance of filter‐feeding Simulium gouldingi and Pisidium compressum immediately below Abanakee dam, show that only minor differences in dominant species and trophic structure of macroinvertebrate communities occurred at affected sites in the Indian River compared to the Cedar River. Thus, flow releases had only a small, localized effect on macroinvertebrate communities in the Indian River. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Increased awareness of the negative effects of dams combined with an aging dam infrastructure has led to an increase in dam removals. However, ecological responses of downstream biota to such actions are poorly understood. We examined the influence of a pair of small dam removals on downstream periphyton and macroinvertebrates in Boulder Creek, WI (USA). The dams were 180 m apart and both were removed on 9 July 2003. We monitored algae and macroinvertebrates as well as habitat characteristics for approximately 2 months before and after the removals upstream and downstream from the two dams, and continued our observations over a similar period (mid‐May to mid‐July) the following summer. After the removals, an initial release of sediment significantly increased the proportion of fine sediments in the downstream reach and buried benthic substrate. This burial led to a 60% reduction in chlorophyll in the downstream reach the week following removal, while concentrations increased in the upstream reference reach. Similarly, macroinvertebrate densities 2 weeks post‐removal were lower relative to pre‐removal densities and were associated with declines of ephemeropterans, trichopterans and dipterans. Examination of Trichoptera genera demonstrated substantial changes in this assemblage associated with diminished densities of the formerly dominant genus Brachycentrus. Algal and invertebrate populations increased in the weeks after the dam removal, but did not reach densities similar to the upstream reference reach. In the following year, both periphyton and invertebrate densities were lower in the downstream reach, suggesting a long‐term effect of the removal. Thus, effects of the dam removal were alternatively positive or negative over time, and indicate that the time scale of consideration has a strong effect on the interpretation of the consequences of this management activity. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
I sampled five sites above and below a dam in the central North Island of New Zealand on five to six occasions to examine the effects on benthic substrates, periphyton and invertebrate communities of (i) degree of flow regulation and (ii) flushing of sediment stored behind a dam. A series of volcanic eruptions during the course of this study provided the opportunity to investigate the effects of a period of high sediment delivery on this regulated river. The operation of the dam prior to sluicing of stored sediment appeared to have little impact on substrate size distribution or fine suspendable sediment levels. Periphyton biomass was markedly higher below than above the dam when sampling was preceded by a period of stable baseflow, but over all sampling dates biomass and inorganic content of periphyton did not appear to be related to degree of flow regulation. The taxonomic richness, biomass and density of invertebrate communities were lowest directly below, rather than above, the dam on most dates, and the site below the dam differed significantly from some of the downstream sites. However, changes in invertebrate abundance and diversity generally did not follow the expected gradient of flow regulation impacts except for the mayfly Deleatidium. Multiple regression analyses implicated substrate size and the biomass and inorganic content of periphyton as significant predictor variables for invertebrate density, biomass and taxonomic richness on sampling dates not influenced by recent sediment flushes, whereas degree of flow regulation was a significant predictor for densities of the dominant chironomid Cricotopus. The volcanic eruption led to deposition of fine silt that had passed through the dam with the residual flow and coarser sediments released during subsequent dam flushes. Flushing of stored sediment during large floods increased levels of sand and gravel directly below the dam and upstream of a large island in the middle reaches of the river, and also appeared to increase scouring of periphyton and associated invertebrates downstream. Overall, invertebrate communities in the study reach appeared to be structured more by periphyton accrual patterns, changes in substrate composition, the occurrence of large floods and natural longitudinal gradients than degree of flow regulation. These findings suggest that site‐specific and large‐scale factors can obscure generalized reach‐scale patterns expected along regulated rivers. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Flood‐type disturbances affect both periphyton and macroinvertebrate communities depending on their frequency, magnitude and duration, but some impacts can be mitigated by geomorphic constraints. We studied four rivers in the Adirondack Mountains; the Indian River experienced regulated flow releases creating bank‐full floods four times/week whereas other study sites provided a continuum of control conditions for comparison. We sampled periphyton and macroinvertebrate communities in each river along with channel hydrology, hydraulics and geomorphology. Periphyton abundance varied seasonally and among rivers depending on nitrate concentrations and scour. Flow releases created a static mosaic of patches consisting of heavily scoured bed sediment in the thalweg (high shear stress areas—HSS) which had very low periphyton abundance; boulders and rocky shoals created low shear stress areas (LSS) supporting mats of filamentous algae. Macroinvertebrate densities were highest in HSS areas whereas LSS areas had lower macroinvertebrate densities that were more similar to reference rivers, although both LSS and HSS areas had the lowest species diversity and richness. Macroinvertebrate composition in HSS areas was dominated by filter‐feeders, whereas LSS areas had more gatherers and scrapers. While all rivers had high boulder densities, the Indian River could be considered geomorphically moribund—its substrate was immobile and the channel experienced no adjustments in spite of high flood frequencies. These physical characteristics help mitigate the severe hydrologic conditions that releases create because the static mosaic of low and HSS patches allow certain macroinvertebrates adapted to this level of disturbance to persist. This static mosaic is different from the shifting mosaic pattern often observed in streams following flood‐type disturbances. Geomorphically moribund rivers may lack ecological sensitivity to hydrologic disturbances, and decisions to limit flow modification (e.g. recreational flow releases, hydropower generation) should consider whether assumed ecological impacts are likely to occur given local geomorphic conditions and constraints. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
As more hydroelectric dams regulate rivers to meet growing energy demands, there is ongoing concern about downstream effects, including impacts on downstream benthic macroinvertebrate (BMI) communities. Hydropeaking is a common hydroelectric practice where short‐term variation in power production leads to large and often rapid fluctuations in discharge and water level. There are key knowledge gaps on the ecosystem impacts of hydropeaking in large rivers, the seasonality of these impacts, and whether dams can be managed to lessen impacts. We assessed how patterns of hydropeaking affect abundance, taxonomic richness, and relative tolerance of BMIs in the Saskatchewan River (Saskatchewan, Canada). Reaches immediately (<2 km) downstream of the dam generally had high densities of BMIs and comparable taxonomic diversity relative to upstream locations but were characterized by lower ratios of sensitive (e.g., Ephemeroptera, Plecoptera, and Trichoptera) to tolerant (e.g., Chironomidae) taxa. The magnitude of effect varied with seasonal changes in discharge. Understanding the effects of river regulation on BMI biodiversity and river health has implications for mitigating the impacts of hydropeaking dams on downstream ecosystems. Although we demonstrated that a hydropeaking dam may contribute to a significantly different downstream BMI assemblage, we emphasize that seasonality is a key consideration. The greatest differences between upstream and downstream locations occurred in spring, suggesting standard methods of late summer and fall sampling may underestimate ecosystem‐scale impacts.  相似文献   

6.
Dam removal to restore ecologically impaired rivers is becoming increasingly common. Although the target often is to facilitate fish migration, dam removal has also been assumed to benefit other types of organisms. Because few studies thus far deal with effects of dam removal on stream macroinvertebrates and because results have been equivocal, we investigated both short‐ and longer‐term dam‐removal effects on downstream macroinvertebrate communities. We did this in a before‐and‐after study of the removal of a dam located in a south Swedish stream. We sampled the benthic fauna 6 months before dam removal and both 6 months and 3.5 years after the dam was removed. We compared species composition, taxonomic richness, total densities and densities of macroinvertebrate groups before and after dam removal and between downstream and reference sites. We found that dam removal reduced some macroinvertebrate taxa at the downstream site, but we found no effect on community composition. Although this corroborates results from previous short‐term studies, we also found a reduction of taxonomic richness and that some dam‐removal effects persisted or even increased over time. The most likely explanation for the suppression of benthic macroinvertebrate richness following dam removal is a significantly increased sediment transport from the former reservoir and a subsequent loss of preferred substrates. Our results indicate that adverse dam‐removal effects may be long lasting but taxon specific. We therefore call for longer‐term studies on a variety of organisms to better understand how dam removal may influence downstream macroinvertebrate communities. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Hydropower dams substantially modify lotic ecosystems. Most studies regarding their ecological impacts are based on large dams and provide little information about the far more abundant effects of small hydropower dams. Our aim was to characterize the ecological effects of a small hydropower dam and run‐of‐the‐river reservoir on the structure of benthic macroinvertebrate assemblages in the Pandeiros River located in the neotropical savanna of Brazil. We tested the hypothesis that benthic macroinvertebrate assemblages in sites directly affected by the dam and reservoir would show a different taxonomic structure compared with those in free‐flowing sites. We expected to find sensitive native species associated with the free‐flowing sites, whereas resistant and non‐native invasive taxa were expected in impounded sites. We also explored associations between the presence of native and non‐native invasive taxa to each habitat type. We found that the structure of benthic macroinvertebrate assemblages was significantly different between free‐flowing and impounded sites. Also, we found that the dam and reservoir facilitated colonization of non‐native invasive species (Corbicula fluminea and Melanoides tuberculata) because only in those sites they were found in high abundance, in contrast to the free‐flowing sites. Although the environmental conditions imposed by the impoundment altered the structure of benthic macroinvertebrate assemblages, the effects were limited to sites closest to the dam. Our results highlight the necessity of understanding physical habitat changes caused by the presence and management of run‐of‐the‐river dams and reservoirs.  相似文献   

8.
Large‐scale flow release experiments are becoming common for improving aquatic habitat quality downstream of dams. Because of the naturally high fine sediment load in the Durance River, France due to inputs from torrential tributaries draining badlands, unpredictable high flow events with dam overspill are not always sufficient to prevent clogging, which can lead to habitat degradation (especially spawning habitats) in bypassed reaches. Therefore, large‐scale flow experiments were conducted on four reaches to test the efficacy of clear‐water releases to improve aquatic habitat conditions. Continuous measurements of water depth, suspended sediment concentrations, and turbidity were conducted during twelve releases and compared on nine. Before and after each release, superficial clogging was measured. The study shows that there is a link between the volume of suspended sediments carried by water releases and the initial clogging. The volumes carried were low compared with the river's annual transport. The effect on clogging can vary significantly from one release to another. In particular, the hydrological context surrounding the releases has a significant influence on clogging. Comparisons of monitoring showed that releases are more effective on reaches that are more severely regulated (high hydrological control) than on those that are less well‐controlled. The areas with the highest initial clogging tend to unclog more than those with lower initial clogging; however, the latter zones are most impacted by ineffective releases. Performing a release on environments with low initial clogging can therefore be environmentally damaging. To ensure that releases are successful and that intervention is warranted, initial clogging should be measured in the field and releases should only be performed if the clogging is judged to be unfavourable.  相似文献   

9.
Abiotic and biotic impacts below impoundments within the context of the River Continuum (RCC) and the Serial Discontinuity Concepts (SDC) have been the focus of many lotic studies. Recovery gradients, however, are rarely examined in sufficient detail below dams. Further refinement and understanding are needed to inform science and river managers about regulated river ecology. In this study, we examine longitudinal patterns in abiotic and biotic characteristics in two regulated rivers in Northern Canada. We also examine spatial patterns on two natural rivers: a lake outlet river and a river with no lakes. Direct gradient analysis revealed that increases in periphyton, planktonic drift, primary production, substrate size, and changes in thermal regime at sites closest to the dam drive benthic invertebrate community characteristics. We test the Serial Discontinuity Concept by comparing predicted functional forms of each environmental variable with the empirically derived forms. Substrate size, periphyton biomass, and drift density increased below dams and recovered quickly within 5 km downstream, following closely with SDC predictions. The response of organic matter and water quality was variable, and benthic invertebrate richness recovered relatively quickly, contrary to SDC predictions. Thermal regime and flow took much longer to recover than most variables and represent a second longer gradient type below dams. Plecoptera, Gomphidae, and Simuliidae were strongly influenced by altered resource and habitat and may be good candidates for indicators and predictive modelling. Our results generally support predictions from the Serial Discontinuity Concept and highlight the need for the further testing and refinement of this concept. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Macroinvertebrate drift was sampled at 15 sites along the Tongariro River, New Zealand above and below two hydroelectric dams. Sixty‐seven invertebrate taxa were collected in the drift. Trichoptera (31) were the most diverse, followed by Diptera (13), Ephemeroptera (8) and Plecoptera (8). However, chironomidae were the numerically dominant taxa in the drift throughout the river and represented over 80% of all animals collected. Of these, Orthocladiinae and Diamesinae were the most abundant. Taxonomic richness declined with distance downstream and peaked at sites with intermediate levels of periphyton biomass. The per cent of Ephemeroptera, Plecoptera and Trichoptera (EPT) was 3–4 times higher in the unregulated section of the river and declined exponentially with both distance downstream and increase in periphyton biomass, but densities were similar along the river. Of the measured environmental variables periphyton biomass was most closely linked with drift community structure. Periphyton biomass was six times higher in the lower section of the river than the upper unregulated section. The autocorrelation between periphyton biomass and distance downstream complicates the interpretation of results. However, because of the distinct differences between above and below dam sections of river in periphyton biomass and the strong link between it and invertebrate drift we suggest that the alteration of flow patterns by the hydroelectric dams and the associated shift in periphyton biomass is the most likely explanation for invertebrate drift patterns in the river. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Water chemistry and macroinvertebrates were studied in the River Tera (north-western Spain) to assess the effects on the river of two chained reservoirs with hypolimnetic release during the stratification period in 1991. The river-water variables most affected by the dam in this study are temperature, pH, conductivity, silicate, ammonia, nitrate and phosphate. Of these, temperature, with more constant values in the river after the dams, in contrast with diel and seasonal cycles, generates a special environment (short thermal amplitude) several kilometres downstream. On the other hand, ammonia, owing to the magnitude of its changes, seems to be the main factor affected by the dams, and a modifier of river water quality, although its values do not seem to be critical. Although dissolved oxygen is greatly affected by the dams, particularly during stratification conditions, bottom release by hollow-cone solves the problem of reoxygenation downstream from the dam. Unregulated stations presented the most diverse macroinvertebrate communities and also the highest values of the biotic index BMWP', typical of very clean waters. The stations influenced by the dams showed lower values, but with a gradual trend towards recovery downstream from the dam. At 10 km below the reservoir system, benthic communities showed an important recovery. Some management tools related to the ecological problems caused by this type of reservoir are discussed. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
Glen Canyon Dam, located on the Colorado River in northern Arizona, has affected the physical, biological and cultural resources of the river downstream in Grand Canyon. One of the impacts to the downstream physical environment that has important implications for the aquatic ecosystem is the transformation of the thermal regime from highly variable seasonally to relatively constant year‐round, owing to hypolimnetic releases from the upstream reservoir, Lake Powell. Because of the perceived impacts on the downstream aquatic ecosystem and native fish communities, the Glen Canyon Dam Adaptive Management Program has considered modifications to flow releases and release temperatures designed to increase downstream temperatures. Here, we present a new model of monthly average water temperatures below Glen Canyon Dam designed for first‐order, relatively simple evaluation of various alternative dam operations. The model is based on a simplified heat‐exchange equation, and model parameters are estimated empirically. The model predicts monthly average temperatures at locations up to 421 km downstream from the dam with average absolute errors less than 0.5°C for the dataset considered. The modelling approach used here may also prove useful for other systems, particularly below large dams where release temperatures are substantially out of equilibrium with meteorological conditions. We also present some examples of how the model can be used to evaluate scenarios for the operation of Glen Canyon Dam. Published in 2008 by John Wiley & Sons, Ltd.  相似文献   

13.
Past and current pressure on streams and rivers for consumptive use requires the development of tools and decision‐making processes for water managers to minimize impacts on ecological function. This paper examines the utility of modeling benthic biomass in relation to benthic macroinvertebrate (BMI) community attributes for water resource management scenarios in the Cliff‐Gila Valley of the Gila River, New Mexico, USA. The river benthos biomass model (RivBio) was used in conjunction with hydraulic modeling to predict growth and decline of benthic biomass. BMI community attributes were compared along gradients of hydrologic impact (successive existing diversions) in the Cliff Gila Valley and were compared to community attributes in similar regional streams. Benthic biomass was minimally affected by proposed diversions at flows above 4.25 cms (150 cfs), but was severely reduced downstream because of existing diversions during lower flow periods. Riffle habitat was disproportionately affected during extreme low and interrupted flow, which may have resulted in BMI communities shifted towards multi‐habitat generalists that can persist in lentic conditions. Flow augmentation from proposed diversions and storage would greatly mitigate these existing biomass losses by providing consistent base flow and lotic conditions in riffle habitat. Both benthic biomass and BMI community endpoints were useful when comparing water management scenarios. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The effects of flow regulation on macroinvertebrates and periphytic diatoms were examined in the Hawkesbury–Nepean River system in Australia. Regulated sites below eight dams or weirs were compared with unregulated sites above the impoundments and sites on two nearby unregulated streams. The management of the water supply during the study created two types of flow regulation, sites with water supply releases and sites with comparatively small or no releases. The macroinvertebrate communities in three habitats and periphytic diatoms below the storages and weirs differed from the biota at unregulated sites above the weirs and on unregulated systems. The number of macroinvertebrate taxa in riffle and pool‐rock assemblages was significantly lower at regulated sites when compared with unregulated sites and the number of stream edge macroinvertebrate and diatom taxa was unaffected by regulation. Riffle and pool‐rock macroinvertebrate assemblages differed between the two types of regulation. However, periphytic diatom and edge habitat macroinvertebrate assemblages did not differ between the two types of flow regulation. Examination of environmental variables associated with the change in the biota suggested that the principal effect of the management of the water supply system in the Hawkesbury–Nepean River was changed hydrology rather than altered water quality. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
The goal of the study was to compare the modes of management of seasonal floods for different dams and to constrain their impact on the relationship between climate variables and streamflow downstream from the dams. At the Rawdon dam, downstream from which the Ouareau River is characterized by a natural‐type regulated flow regime, a ‘type A’ flood management mode prevails, in which the same rainfall and/or snowmelt events account for seasonal floods both in the unregulated (natural) stretch of river upstream from the dam and in the river downstream from the dam. As a result, seasonal floods in the natural setting and downstream from the dam are nearly synchronous. In contrast, downstream from the Matawin dam (Matawin River), which produces an inversion‐type regulated flow regime, the prevalent flood management modes are of types B and D, whereby seasonal floods observed upstream and downstream from the dam are not caused by the same rainfall and/or snowmelt events and, as a result, are not synchronous. This difference in seasonal flood management modes affects the interannual variability of the magnitude of seasonal daily maximum flows related to the seasonal floods. Thus, the interannual variability of these flows downstream from the Matawin dam differs significantly from that of flows upstream. No correlation is observed between climate variables and streamflow downstream from the Matawin dam. This absence of correlation disappears gradually at the annual scale, at which streamflow is correlated with rainfall, as is observed upstream from the dam. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Hypolimnial releases from dams during periods of thermal stratification modify the downstream riverine thermal regime by decreasing water temperature and reducing natural diel thermal variability. This cold‐water thermal pollution in rivers can persist for hundreds of kilometres downstream of dams and impact important ecological processes such as fish spawning. To mitigate this problem, a first‐of‐its‐kind thermal curtain was fitted to the large bottom release Burrendong Dam on the Macquarie River, Australia. The thermal curtain acts by directing warmer, near‐surface epilimnial water to the low‐level hypolimnial offtake. This study aimed to test the efficacy of the thermal curtain by measuring temperatures before and after the curtains installation, quantifying the magnitude and extent of cold‐water thermal pollution along the Macquarie River downstream of Burrendong Dam. Epilimnial releases with use of the curtain increased diel temperature ranges and the mean monthly water temperature below the dam. Epilimnial releases with use of the curtain increased diel temperature ranges from 0.9°C to 2.5°C and reduced the difference between the mean monthly water temperature of an upstream control and a downstream site by up to 3.5°C. A comparison of the monthly temperature means along the river, indicated that thermal recovery, whereby temperatures returned to within the natural range of upstream temperatures occurred 45 km downstream of the dam during summer when the thermal curtain was deployed, compared with approximately 200 km prior to deployment of the curtain. Our study suggests that the use of thermal curtains can reduce cold‐water thermal pollution and improve ecological outcomes for river ecosystems downstream of dams.  相似文献   

17.
Dam removal is an increasingly practised river restoration technique, and ecological responses vary with watershed, dam and reservoir properties, and removal strategies. Moderate‐sized dams, like Hemlock Dam (7.9 m tall and 56 m wide), are large enough that removal effects could be significant, but small enough that mitigation may be possible through a modified dam removal strategy. The removal of Hemlock Dam in Washington State, USA, was designed to limit channel erosion and improve fish passage and habitat by excavating stored fine sediment and reconstructing a channel in the former 6‐ha reservoir. Prior to dam removal, summer daily water temperatures downstream from the dam increased and remained warm long into the night. Afterwards, a more natural diel temperature regime was restored, although daily maximum temperatures remained high. A short‐lived turbidity pulse occurred soon after re‐watering of the channel, but was otherwise similar to background levels. Substrate shifted from sand to gravel–cobble in the former reservoir and from boulder to gravel–cobble downstream of the dam. Initially, macroinvertebrate assemblage richness and abundance was low in the project area, but within 2 years, post‐removal reaches upstream and downstream of the dam had diverse and abundant communities. The excavation of stored sediment and channel restoration as part of the dam removal strategy restored river continuity and improved benthic habitat while minimizing downstream sedimentation. This study provides a comparison of ecological effects with other dam removal strategies and can inform expectations of response time and magnitude. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

18.
The Selenga River is the main tributary of Lake Baikal (Siberian, Russia). In 2015/2016, the water quality at previously identified contaminated hotspot regions in the lower Selenga River basin was evaluated using resident aquatic macroinvertebrate communities as bioindicators. Benthic macroinvertebrate communities within the Selenga River were found to be relatively sensitive to water pollution as was highlighted by three evaluated biotic indices:Average Score per Taxon (ASPT); Ephemeroptera-Plecoptera-Trichoptera density index (EPT); and Trent Biological Index (TBI). The human impact on the Selenga River basin water quality was evident due to the significant decrease of the biotic indices at several sample locations including downstream of the wastewater discharge point of Ulan-Ude city, in the Dzhida River downstream of the confluence of the Modonkul River, and especially in the Modonkul River near to the mining operations at Zakamensk. At the same time, our study revealed a high self-regeneration ability of the aquatic ecosystem throughout the basin; with resident benthic macroinvertebrate communities appearing to recover in both the Selenga River and the Dzhida River within two to five km downstream of the contamination source. The changes in the benthic communities at the Selenga delta sampling sites were shown to occur under the influence of natural factors such as hydrological conditions and benthic sediment type, which significantly changed from the upper to the lower regions of the delta. For the Selenga delta, a typology of benthic macroinvertebrate communities including a map of their spatial distribution is presented.  相似文献   

19.
Longitudinal and seasonal changes in biophysical variables were examined in this seminal study of an intermountain (Palouse) prairie stream. Hypolimnial releases from an irrigation reservoir controlled discharge, temperature and other habitat variables, thereby influencing distribution and abundance of zoobenthos. Dramatic changes in turbidity and nutrient concentrations occurred during the spring runoff and summer irrigation periods and following wind-driven sediment resuspension in the reservoir. Seasonal changes in the relative dominance of certain macroinvertebrate taxa were correlated with physical and chemical dynamics. Based on detrended correspondence analysis (DCA), specific conductance, temperature, dissolved oxygen and nitrates + nitrites were the variables most associated with seasonal macroinvertebrate biomass. Changes in taxa composition downstream from the dam were mainly related to species additions from site to site. Changes in pH and substratum were associated with longitudinal changes in biomass. For instance, the observed bimodal distribution of Cheumatopsyche sp. was correlated with percentage boulder substratum among the sites. On the other hand, DCA performed on macroinvertebrate densities emphasized pH, total ammonia, discharge and substratum. Species composition throughout the prairie segment of the stream was very different from that in the mountain canyon segment. The effects of regulation ameliorated significantly in a downstream direction from the dam. Presence of warm water species (e.g. Helicopsyche sp.) upstream and downstream of the reservoir were indicative of the native stream fauna of the intermountain prairies. Faunal responses to the ‘recovery’ gradient downstream from the dam provided a basis for the development of remedial management actions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号