首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A multiple‐model adaptive control methodology is proposed that is able to provide stability and performance guarantees, for uncertain linear parameter‐varying plants. The identification problem is addressed by taking advantage of recent advances in model falsification using set‐valued observers (SVOs). These SVOs provide set‐valued estimates of the state of the system, according to its dynamic model. If such estimate is the empty set, the underlying dynamic model is invalidated, and a different controller is connected to the loop. The behavior of the proposed control algorithm is demonstrated in simulation, by resorting to a mass–spring–dashpot system. As a caveat, the computational burden associated with the SVOs can be prohibitive under some circumstances. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Active fault detection facilitates determination of the fault characteristics by injecting proper auxiliary input signals into the system. This article proposes an observer‐based on‐line active fault detection method for discrete‐time systems with bounded uncertainties. First, the output including disturbances, measurement noise and interval uncertainties at each sample time is enclosed in a zonotope. In order to reduce the conservativeness in the fault detection process, a zonotopic observer is designed to estimate the system states allowing to generate the output zonotopes. Then, a proper auxiliary input signal is designed to separate the output zonotopes of the faulty model from the healthy model that is injected into the system to facilitate the detection of small fault . Since the auxiliary input signal generation leads to a nonconvex optimization problem, it is transformed into a mixed integer quadratic programming problem. Finally, a case study based on a DC motor is used to show the effectiveness of the proposed method.  相似文献   

3.
This paper is concerned with the problem of the fault detection filter design for discrete‐time switched linear systems with average dwell‐time. The designed fault detection filters are also switched systems, which are assumed to be asynchronously switched with the original switched systems. Improved results on the weighted l2 performance and the H ? performance are first given, and the multiple Lyaounov‐like functions during matched period and unmatched period for the running time of one subsystem are used. By the aid of multiple Lyapunov‐like functions combined with Projection Lemma, the FD filters are designed such that the augmented systems under asynchronous switching are exponentially stable, and the residual signal generated by the filters achieves the weighted l2‐gain for disturbances and guarantees the H ? performance for faults. Sufficient conditions are formulated by linear matrix inequalities, and the filter gains are characterized in terms of the solution of a convex optimization problem. Finally, examples are provided to demonstrate the effectiveness of the proposed design method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
This article presents a switched model reference adaptive controller for discrete‐time piecewise linear systems. In the spirit of the work by Landau in the late seventies, proof of asymptotic stability of the closed‐loop error system is obtained, recasting its dynamics as a feedback system and showing the feedforward and the feedback paths are both passive. The challenge is that both paths can be piecewise linear. Numerical results show excellent performance of the proposed controller even in the face of sudden variations of the plant parameters. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
This paper addresses the problem of estimating the state for a class of uncertain discrete‐time linear systems with constraints by using an optimization‐based approach. The proposed scheme uses the moving horizon estimation philosophy together with the game theoretical approach to the filtering to obtain a robust filter with constraint handling. The used approach is constructive since the proposed moving horizon estimator (MHE) results from an approximation of a type of full information estimator for uncertain discrete‐time linear systems, named in short ‐MHE and –full information estimator, respectively. Sufficient conditions for the stability of the ‐MHE are discussed for a class of uncertain discrete‐time linear systems with constraints. Finally, since the ‐MHE needs the solution of a complex minimax optimization problem at each sampling time, we propose an approximation to relax the optimization problem and hence to obtain a feasible numerical solution of the proposed filter. Simulation results show the effectiveness of the robust filter proposed.  相似文献   

6.
This paper studies the problem of asynchronous fault detection (FD) observer design for piecewise linear systems. Considering that the states of the FD observer and the system may stay at different regions of the state space, asynchronous FD observers are designed at different instants to cope with the challenges incurred by exogenous disturbances and fault signals. By employing new piecewise Lyapunov functions that depend on the different regions where the states are located, it is proved that the proposed asynchronous FD observers ensure the stability and H performance of the error systems. Three examples are given to show that the new design scheme provides better FD results than the existing design methods.  相似文献   

7.
The effectiveness of comprime factor techniques in L2 and L model reduction of unstable linear systems is analysed. Asymptotic estimates are given of the achievable error in the stable and unstable parts of the approximate system, measured in a number of different norms, some involving the associated Hankel operators. The chordal metric is introduced as a measure of approximation and is shown to yield the graph topology. Finally it is deduced that asymptotically optimal L2 and L convergence rates can be obtained for a large class of unstable systems.  相似文献   

8.
This paper is concerned with the design of robust non‐minimal order H filters for uncertain discrete‐time linear systems. The uncertainty is assumed to be time‐invariant and to belong to a polytope. The novelty is that a convex filtering design procedure with Linear Matrix Inequality constraints is proposed to synthesize guaranteed‐cost filters with order greater than the order of the system. An H‐norm bound for the transfer‐function from the system input to the filtering error is adopted as performance criterion. The non‐minimal order filters proposed generalize other existing filters with augmented structures from the literature and can provide better performance. An extension to the problem of robust smoothing is proposed as well. The procedure is illustrated by a numerical example. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
This paper investigates the design of distributed observers for agents with identical linear discrete‐time state‐space dynamics networked on a directed graph interaction topology. The digraph is assumed to have fixed topology and contain a spanning tree. Cooperative observer design guaranteeing convergence of the estimates of all agents to their actual states is proposed. The notion of convergence region for distributed observers on graphs is introduced. It is shown that the proposed cooperative observer design has a robustness property. Application of cooperative observers is made to the synchronization problem. A command trajectory generator and pinning control are employed for synchronizing all the agents to a desired trajectory. Complete knowledge about the agent's state is not assumed. A duality principle is shown for observers and state feedback for distributed discrete‐time systems on graph topologies. Three different observer/controller architectures are proposed for dynamic output feedback regulator design, and they are shown to guarantee convergence of the estimate to the true state and synchronization of all the agents' states to the command state trajectory. This provides design methods for cooperative regulators based on a separation principle. It is shown that the observer convergence region and feedback control synchronizing region for discrete‐time systems are inherently bounded, so that the conditions for observer convergence and state synchronization are stricter than the results for the continuous‐time counterparts. This is in part remedied by using weighting of different feedback coupling gains for every agent. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
In the context of fault detection and isolation of linear parameter‐varying systems, a challenging task appears when the dynamics and the available measurements render the model unobservable, which invalidates the use of standard set‐valued observers. Two results are obtained in this paper, namely, using a left‐coprime factorization, one can achieve set‐valued estimates with ultimately bounded hyper‐volume and convergence dependent on the slowest unobservable mode; and by rewriting the set‐valued observer equations and taking advantage of a coprime factorization, it is possible to have a low‐complexity fault detection and isolation method. Performance is assessed through simulation, illustrating, in particular, the detection time for various types of faults. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
This paper considers the problem of designing functional interval observers for a class of non‐linear fractional‐order systems with bounded uncertainties. First, interval observers for linear functions of the state vector of the considered system are designed. Then, conditions for the existence of such interval observers are established and an effective algorithm for computing unknown observer matrices is provided in this paper. Finally, numerical examples and simulation results are given to illustrate the effectiveness of the proposed design method.  相似文献   

12.
This article studies the problem of minimality and identifiability for switched autoregressive exogenous (SARX) systems. We propose formal definitions of the concepts of identifiability and minimality for SARX models. Based on these formalizations, we derive conditions for minimality and identifiability of SARX systems. In particular, we show that polynomially parameterized SARX systems are generically identifiable.  相似文献   

13.
The , and mixed dynamic output feedback control of Markov jump linear systems in a partial observation context is studied through an iterative approach. By partial information, we mean that neither the state variable x(k) nor the Markov chain θ(k) are available to the controller. Instead, we assume that the controller relies only on an output y(k) and a measured variable coming from a detector that provides the only information of the Markov chain θ(k). To solve the problem, we resort to an iterative method that starts with a state‐feedback controller and solves at each iteration a linear matrix inequality optimization problem. It is shown that this iterative algorithm yields to a nonincreasing sequence of upper bound costs so that it converges to a minimum value. The effectiveness of the iterative procedure is illustrated by means of two examples in which the conservatism between the upper bounds and actual costs is significantly reduced.  相似文献   

14.
In this paper, a robust periodically time‐varying horizon finite memory fault detection filter (PTVHFM‐FDF) is proposed to generate residual signal for the purpose of system monitoring. The major advantage of PTVHFM‐FDF is that finite historical data can be sufficiently utilized to enhance the robustness of fault detection against model uncertainty and external disturbance. The analysis, design, and application of PTVHFM‐FDF consist of several steps. Firstly, a periodic time‐varying residual error system is constructed on the basis of augmented method and time domain partition method. Secondly, in facilitating robust stability and performance analysis, the time‐varying residual error system is further transformed into a polyhedral time‐invariant system on the basis of time lifting technique. Thirdly, less conservative PTVHFM‐FDF analysis and design conditions are then obtained on the basis of Finsler relaxation lemma and slack variable structure definition. Fourthly, choices of memory window horizon parameters are properly suggested on the basis of a compromise between FDF robustness and its structural complexity. Finally, an integrated design and application algorithm of PTVHFM‐FDF is summarized. Effectiveness of PTVHFM‐FDF is verified through three examples. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
For a discrete‐time neutrally stable bilinear system, a nonlinear state feedback control based on the passivity design has been proposed to stabilize the system globally and asymptotically. This paper shows that the decay rate resulting from the passivity control is not exponential, and the system's response speed becomes very sluggish asymptotically. A ‘normalized’ nonlinear control is therefore proposed to achieve exponential stability. The new exponentially stabilizing control not only improves the system's response speed, but also enhances the system's robustness against small parametric perturbations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
A delay‐dependent criterion for the global asymptotic stability of a class of uncertain discrete‐time state‐delayed systems using various combinations of quantization and overflow nonlinearities is presented. The proposed criterion is in the form of a linear matrix inequality and, hence, computationally tractable. A numerical example highlighting the usefulness of the proposed criterion is given. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The problem of delay‐dependent robust stabilization for uncertain singular discrete‐time systems with Markovian jumping parameters and time‐varying delay is investigated. In terms of free‐weighting‐matrix approach and linear matrix inequalities, a delay‐dependent condition is presented to ensure a singular discrete‐time system to be regular, causal and stochastically stable based on which the stability analysis and robust stabilization problem are studied. An explicit expression for the desired state‐feedback controller is also given. Some numerical examples are provided to demonstrate the effectiveness of the proposed approach. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
This paper is concerned with the reachable set estimation problem for discrete‐time linear systems with multiple constant delays and bounded peak inputs. The objective is to check whether there exists a bounded set that contains all the system states under zero initial conditions. First, delay‐dependent conditions for the solvability of the addressed problem are derived by employing a novel Lyapunov–Krasovskii functional. The obtained conditions are expressed in terms of matrix inequalities, which are linear when only one scalar variable is fixed. On the basis of these conditions, an ellipsoid containing the reachable set of the considered system is obtained. An approach for determining the smallest ellipsoid is also provided. Second, the approach and results developed in the first stage are generalized to the case of systems with polytopic parameter uncertainties, and delay‐dependent conditions are given in the form of relaxed matrix inequalities. Finally, two numerical examples are provided to demonstrate the effectiveness of the proposed methods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
This paper considers the problem of designing an observer insensitive to system parameter variations in discrete time linear multivariable systems. A K-insensitive observer is defined as an observer that can reconstruct a linear function of the state vector in spite of the variations of system parameters, provided the initial state of the observer is suitably chosen. A deadbeat observer is defined to be an observer that reconstructs the linear function for an arbitrary initial condition of the observer. Then, the existence of the K-insensitive observer is examined, and the class of K-insensitive observers is characterized. A necessary and sufficient condition is derived under which the K-insensitive deadbeat observer can be designed, and a simple algorithm is proposed to design the observer. The resulting observer is shown to be stable. The order of the observer is evaluated. The condition for generic solvability of the problem is also given.  相似文献   

20.
This paper addresses the problem of fault detection (FD) for discrete‐time systems with global Lipschitz conditions and network‐induced uncertainties. By utilizing Bernoulli stochastic variables and a switching signal, a unified measurement model is proposed to describe three kinds of network‐induced uncertainties, that is, access constraints, time delays, and packet dropouts. We aim to design a mode‐dependent fault detection filter (FDF) such that, for all external disturbances and the above uncertainties, the error between the residual and fault is made as small as possible. The addressed FD problem is then converted into an auxiliary H filtering problem for discrete‐time stochastic system with multiple time‐varying delays. By applying the Lyapunov‐Krasovskii approach, a sufficient condition for the existence of the FDF is derived in terms of certain linear matrix inequalities (LMI). When these LMIs are feasible, the explicit expression of the desired FDF can also be characterized. A numerical example is exploited to show the effectiveness of the results obtained. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号