首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The performance of a stream restoration project that incorporates a bridge crossing is evaluated within a 3‐year monitoring period. A goal of the project was to alleviate and prevent future sediment aggradation within the waterway of a low‐clearance bridge crossing. The stream restoration project included two rock cross vanes and stepped riprap and vegetation bank stabilization. Monitoring of the project involved the collection of channel survey data, pebble counts, and general observations of instream structure condition and sediment movement. The evaluated performance of the restoration structures is related to the general hydrologic conditions, the historical changes in the watershed and channel, and the hydraulic conditions created by the low‐clearance bridge crossing. Backwater effects created by the bridge crossing are found to be a substantial cause of the failure of the stream restoration project to meet its goals. The low‐clearance bridge hydraulics are preventing a rock cross vane located upstream of the bridge from creating a scour hole in the centre of the channel; instead, aggradation is occurring in this portion of the channel. However, degradation is occurring downstream of the bridge causing the failure of the second rock cross vane and of the riprap and vegetation bank. Although the hydraulic conditions may stem from the initial design of the bridge crossing, any restoration structure should be designed according to the current site hydraulics. In addition to providing insight into the design and construction of stream restoration structures, the results have implications for the design and management of bridge crossings. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
A widespread lack of post‐project appraisals (PPAs) not only hinders progress in the field of river restoration but also limits the application of adaptive management – a powerful heuristic tool particularly well suited to dynamic fluvial environments. In an effort to contribute to the limited body of scientific literature pertaining to PPAs, we evaluated a stream restoration project completed in the fall of 2005 in central New York. Using a variety of evaluation approaches, we documented both successes (e.g. enhanced in‐stream habitat) and short‐comings (e.g. channel avulsions). Overall, we concluded that the project was marginally successful in achieving its stated goals and that future prospects remain uncertain based on current trajectory. Lessons learned from this monitoring study include: (i) protect vulnerable banks and floodplains until vegetation is established, e.g. via integrated bio‐ and geo‐technical methods, (ii) perform scour depth analyses and excavate scour pools associated with hydraulic structures to design depth to prevent clogging of the channel during post‐construction floods, (iii) orient bank vanes such that cross‐stream flows are not deflected towards the bank, (iv) cross‐validate restoration designs via multiple methods, including process‐based sediment transport relations, especially in unstable gravel‐bed rivers, (v) anticipate and fund for fixing natural channel design (NCD) projects for 3–5 years after completion to account for uncertainties and (vi) identify measurable, goal‐specific success criteria that account for watershed scale stressors and site constraints prior to construction to facilitate successful project design and ensure effective outcomes appraisal. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Excess fine sediment is a leading cause of ecological degradation within the Chesapeake Bay watershed. To effectively target sediment mitigation measures, it is necessary to identify and quantify the delivery of sediment sources to local waterbodies. This study examines the contributions of sediment sources within Upper Difficult Run, a suburbanized watershed in Fairfax County, Virginia. A source sediment library was constructed from stream banks, forest soils, and road dust. Target sediments were collected from fine channel deposits and suspended sediment during 16 storm events from 2008 to 2012. Apportionment of targets to sources was performed using Sed_SAT, a publicly available toolkit for sediment fingerprinting. Bed sediment was dominated by stream bank material (mean: 98%), with minor contributions from forests (2%). Suspended fine sediments were also dominated by stream banks (suspended sediment concentration‐weighted mean: 91%), with minor contributions from roads (8%) and forests (<1%). Stream banks dominated at all discharges, and on the rising limb and at peak flow, sediment concentrations increased due to bank material rather than surface erosion. Sediment budget data indicated that direct bank erosion was insufficient to account for the suspended load derived from stream banks. However, bank‐derived sediment re‐mobilized from in‐channel storage could account for this difference and, combined, resulted in a sediment delivery ratio of 0.847 for all bank‐derived sediments. Results demonstrate that stream bank erosion is responsible for the majority of fine sediment in this suburban watershed of the Chesapeake Bay drainage area. Thus, management actions to control upland sources of sediment may have limited effect on the sediment conditions of Upper Difficult Run, whereas efforts focusing on bank stabilization, channel restoration, and/or stormwater management to reduce bank erosion may improve the ecological condition of these waterbodies.  相似文献   

4.
Monitoring, assessment and reporting of stream restoration projects have historically lagged far behind implementation. However, in recent years, rigorous post‐project assessments (PPAs) of modern stream restoration practices have steadily increased. This has helped to stimulate debate and inquiry regarding the effectiveness of restoration techniques and has provided critical feedback to practitioners and planners useful in restoration design and implementation. Nonetheless, few studies exist that track the performance of modern restoration projects over a protracted period. Instead, most are based on a brief snapshot taken during the initial post‐construction period, which may not always accurately characterize longer‐term project performance. Here, we re‐visit a stream restoration project implemented in 2005 on a third‐order stream in central New York. By repeating several of our quantitative and qualitative evaluation procedures from the original 2007 PPA we demonstrate that (i) despite several recent large flood events and the fact that the current channel geometry differs from the design/as‐built configuration, the project has made substantial progress towards the goals of channel stabilization and habitat enhancement; (ii) this more favourable, mid‐term outcome was not necessarily evident during or well‐predicted by our 2007 PPA; (iii) although continued deformation of in‐stream structures may be a harbinger of future channel instability, riparian vegetation is playing an increasingly important role in maintaining channel stability; and (iv) accurately predicting local scour depths proximal to in‐stream structures, performing a detailed sediment budget analysis, and prescribing adequate bank protection are critical to project success, especially during early stages of a project. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Mechanically reshaping stream banks is a common practice to mitigate bank erosion in streams that have been extensively channelised and lowered for land drainage. A common perception regarding this activity is that fish populations will be largely unaffected, at least in the short term, because the low‐flow wetted channel remains undisturbed. However, the response of fish populations to this practice has rarely been quantitatively evaluated. Using a Before‐After‐Control‐Impact design, we assessed fish community responses to a catchment‐scale bank reshaping event in a fourth‐order low‐gradient stream that drains an intensive agricultural landscape. Quantitative electric fishing and fish habitat data were collected 2 months before and annually for 3 years after the reshaping event. After reshaping, deposited fine sediment levels increased in impact reaches, and there was a significant reduction in anguillid eel biomass (by 49%). In contrast, densities of obligate benthic gobiid bully species increased significantly in impact reaches—potentially due to reduced predation pressure from eels. Three years after bank reshaping, fish community structure had largely returned to its preimpact state in the reshaped areas. Our results suggest that, even in highly modified stream channels, further bank modification can reduce instream habitat quality and displace eels for at least 1 year. Managers should endeavour to use bank erosion control measures that conserve bank‐edge cover, especially in streams with populations of anguillid eels, because these fish are declining globally.  相似文献   

6.
Although soil seed banks are understood to be integral to the vegetation dynamics and restoration of many ecosystems, little is known of their role in riparian zones. In this study, we investigated soil seed banks of riparian zones of contrasting condition in an agricultural landscape and evaluated their potential to influence riparian restoration. We examined the composition and structure of germinable soil seed banks along lateral gradients from stream channels in both cleared and wooded riparian zones of three lowland creeks within the Goulburn Broken catchment in temperate southeastern Australia. Environmental correlates of soil seed bank characteristics and similarity to extant vegetation were also examined. We found an abundant and species‐rich soil seed bank mostly comprising propagules of perennial rushes and sedges and annual and perennial grasses with many species of annual forbs. While the majority of identifiable germinants and species were native, exotic species were common at all locations. Soil seed bank composition was relatively homogeneous among streams and along lateral gradients from the channel. Riparian condition (i.e. cleared or wooded), however, had a strong influence on soil seed bank composition and structure with cleared reaches containing more species, more germinable annual grasses and higher total numbers of germinable seeds. Soil seed bank composition was correlated with site openness suggesting that extant vegetation structure plays an important role in soil seed bank dynamics. Recruitment from the in situ soil seed bank will help restore only some components of the riparian plant community and may hinder restoration by introducing undesirable species. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
This study investigated the effects of culvert replacement design on fish habitat and fish weight by comparing substrate diversity and weight at three stream simulation (SS)‐design and three bankfull and backwater (BB)‐design sites on the Chequamegon‐Nicolet National Forest, Wisconsin. Stream channel cross‐sections, Wolman substrate particle counts, and single‐pass backpack electro‐fishing survey data were used to quantify fish habitat and fish weight in 50‐m upstream and downstream sample reaches at each site. We applied generalized linear mixed models to test the hypothesis that substrate size and fish weight did not differ according to stream‐crossing design type (SS or BB) and location (upstream or downstream). Substrate particle sizes were significantly greater upstream of the stream crossing when compared to downstream of the stream crossing at both SS and BB sites for riffles and pools. Substrate particle sizes were also significantly greater upstream of BB sites when compared to upstream of SS sites. Results of this study indicated statistically greater individual fish weights upstream of SS‐design sites in comparison to upstream of BB‐design sites in first‐ to third‐order low gradient streams. These results suggested that the SS‐design approach appears to be more effective at transporting sediment downstream, and illustrated the value of using fish weight as an indicator of biological success for stream‐crossing designs. Published 2017. This article is a U.S. Government work and is in the public domain in the USA. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

8.
The assemblage of stream habitat types can drive biofilm composition and activity in headwater streams, thereby influencing rates of ecosystem function. However, the influence of human‐induced alterations to the distribution of benthic habitat such as construction, land‐use changes and restoration on biofilm‐mediated processes has not been well studied. We measured nutrient uptake of ammonium, nitrate and phosphate, as well as gross primary production and community respiration in three streams in Michigan, USA, each with an upstream reference and a downstream restored reach. The restoration included a 10‐m sediment trap, paired with 40–60 m of gravel and boulder added downstream and designed to retain sediment, stabilize banks and provide spawning habitat for trout. We sampled four times in the six stream reaches from May 2006 to September 2007. Across streams, restored reaches reflected the structural manipulation with increased predominance of coarse inorganic sediments, higher gas exchange rate and increased transient storage. However, nutrient uptake and community respiration rates were different between reaches at only one site. The ecosystem response by this stream was driven by the large differences in coarse inorganic habitat between reference and restored reaches. We conclude that restorations of benthic habitat which are visually conspicuous, such as creation of settling pools and gravel‐filled reaches, did not universally affect stream ecosystem function. Initial conditions and magnitude of change may be key factors to consider in explaining functional responses, and predicting the influence of habitat restoration on ecosystem function remains a challenge. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Stream restoration approaches most often quantify habitat degradation, and therefore recovery objectives, on aquatic habitat metrics based on a narrow range of species needs (e.g., salmon and trout), as well as channel evolution models and channel design tools biased toward single‐threaded, and “sediment‐balanced” channel patterns. Although this strategy enhances perceived habitat needs, it often fails to properly identify the underlying geomorphological and ecological processes limiting species recovery and ecosystem restoration. In this paper, a unique process‐based approach to restoration that strives to restore degraded stream, river, or meadow systems to the premanipulated condition is presented. The proposed relatively simple Geomorphic Grade Line (GGL) design method is based on Geographic Information System (GIS) and field‐based analyses and the development of design maps using relative elevation models that expose the relic predisturbance valley surface. Several case studies are presented to both describe the development of the GGL method and to illustrate how the GGL method of evaluating valley surfaces has been applied to Stage 0 restoration design. The paper also summarizes the wide applicability of the GGL method, the advantages and limitations of the method, and key considerations for future designers of Stage 0 systems anywhere in the world. By presenting this ongoing Stage 0 restoration work, the authors hope to inspire other practitioners to embrace the restoration of dynamism and diversity through restoring the processes that create multifaceted river systems that provide long‐term resiliency, meta‐stability, larger and more complex and diverse habitats, and optimal ecosystem benefits.  相似文献   

10.
Channelization typically modifies the energy regime and sediment transport capacity of rivers, triggering morphologic adjustments. Most past studies of channelization have focused on erosional responses involving channel incision and widening. Depositional adjustments to channelization, although noted in previous work, have not been documented in detail. This study investigates the depositional response of the Spoon River, a headwater agricultural stream in Illinois, USA, to channelization. Historical aerial and ground‐based photography show that channelization of the Spoon River in the early 20th century produced a wide, deep trapezoidal drainage channel. Following this channelization, unvegetated alternate and mid‐channel bars developed on the bottom of the ditch. Sedimentological analysis of bar stratigraphy indicates that the bars grew through vertical accretion of horizontal sheets of sand‐and‐gravel bedload and organic‐rich drapes of fine‐grained suspended load. The horizontal sheets of sand and gravel are consistent with the braided conditions shown on historical photographs. Late‐stage bar growth appears to have been dominated by progressive overbank deposition of suspended load as indicated by the presence of a thick, fine‐grained organic‐rich A horizon immediately below the surface of each bar. The development of a soil layer also suggests that the bars are stable—an inference supported by the thick grass cover on the bar surfaces. The net result of the depositional response is the formation of a meandering channel flanked by a discontinuous floodplain on the bottom of the ditch. The construction of a wide ditch relative to original stream size is a key factor promoting a depositional response to channelization. Allowing or actively promoting floodplain elements to form in overwidened ditches may be a viable management option for improving the environmental quality of channelized agricultural streams. The Spoon River has a diverse fish community compared to channelized streams in East Central Illinois that lack a meandering low‐flow channel. This morphological configuration apparently enhances geomorphological and ecological variability while sustaining the drainage function of the ditch. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
Historically, perceived increases in erosion and flooding levels have been attributed to in‐stream wood and used to justify its removal from streams and rivers around the world. More recently, recognition of the adverse morphological and biological impacts caused by this removal has led to rehabilitation projects that actively reintroduce wood to streams. However, a perception remains amongst some members of the general community that wood additions increase the likelihood of flooding and erosion in the target streams. To test whether there was a basis for this perception, we experimentally added wood to eight streams across southwest Victoria and Gippsland, Australia. The velocity, stage and bed and bank erosion rates were compared with those of unaltered reaches. We detected localized changes in the velocity and stage parameters but that these were unlikely to operate at the reach‐scale. Bed erosion rates, where maximum erosion was assumed if pins were not recovered, showed increased erosion due to wood additions but this was not supported by channel shape analyses, which identified short‐term increases in the variability of the channel shape, followed by longer‐term stability at treatment sites. We found no clear evidence of increased longer‐term rates of erosion or flooding associated with the introduction of wood to streams over the 18‐month study period. It remains important to carefully design rehabilitation works, but the lack of adverse effects on stream morphology and increased variability of the in‐stream environment suggests improved habitat diversity, supporting the use of wood addition as a stream rehabilitation technique. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
It is well known that large woody debris (LWD) plays an important functional role in aquatic organisms' life. However, the influence of LWD on channel morphology and aquatic environments at watershed levels is still unclear. The relationships between wood and surface structure and aquatic habitat in 35 first through fifth order streams of southern interior British Columbia were investigated. Study streams in the channel networks of the study watersheds were classified into four size categories based on stream order and bankfull width: Stream size I: bankfull width was less than 3 m, Stream size II: 3–5 m, Stream size III: 5–7 m, Stream size IV: larger than 7 m. We found the number of functional pieces increased with stream size and wood surface area in stream sizes I, II and III (24, 28 and 25 m2/100 m2, respectively) was significantly higher than that in stream size IV (12 m2/100 m2). The contribution of wood pieces to pool formation was 75% and 85% in stream sizes II and III, respectively, which was significantly higher than those in stream size I (50%) and size IV (25%). Between 21% and 25% of wood pieces were associated with storing sediment, and between 20% and 29% of pieces were involved in channel bank stability in all study streams. Due to long‐term interactions, LWD in the intermediate sized streams (Size II and III) exhibited much effect on channel surface structure and aquatic habitats in the studied watersheds. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
The foundations of river restoration science rest comfortably in the fields of geology, hydrology, and engineering, and yet, the impetus for many, if not most, stream restoration projects is biological recovery. Although Lane's stream balance equation from the mid‐1950s captured the dynamic equilibrium between the amount of stream flow, the slope of the channel, and the amount and calibre of sediment, it completely ignored biology. Similarly, most of the stream classification systems used in river restoration design today do not explicitly include biology as a primary driver of stream form and process. To address this omission, we cast biology as an equal partner with geology and hydrology, forming a triumvirate that governs stream morphology and evolution. To represent this, we have created the stream evolution triangle, a conceptual model that explicitly accounts for the influences of geology, hydrology, and biology. Recognition of biology as a driver leads to improved understanding of reach‐scale morphology and the dynamic response mechanisms responsible for stream evolution and adjustment following natural or anthropogenic disturbance, including stream restoration. Our aim in creating the stream evolution triangle is not to exclude or supersede existing stream classifications and evolutionary models but to provide a broader “thinking space” within which they can be framed and reconsidered, thus facilitating thought outside of the alluvial box.  相似文献   

14.
Up to now, most lowland stream restoration projects were unsuccessful in terms of ecological recovery. Aiming to improve the success of stream restoration projects, a novel approach to restore sandy‐bottom lowland streams degraded by channel incision was launched, consisting of the addition of sand to the stream channel in combination with the introduction of coarse woody debris. Yet it remained unknown whether this novel measure of sand addition is actually effective in terms of biodiversity improvements. The aim of the present study was therefore to evaluate if sand addition can improve hydromorphological stream complexity on the short term leading to an increase in macroinvertebrate biodiversity. To this end, particle transport, water depth, current velocity, dissolved oxygen dynamics, and sediment composition were measured. The response of the macroinvertebrate community composition was determined at different stages during the disturbance and short‐term recovery process. Immediately downstream the sand addition site, transport and sedimentation of the sand were initially intense, until an equilibrium was reached and the physical conditions stabilized. The stream section matured fast as habitat formation took place within a short term. Macroinvertebrate diversity decreased initially but recovered rapidly following stabilization. Moreover, an increase in rheophilic taxa was observed in the newly formed habitats. Thus, although sand addition initially disturbed the stream, a relatively fast physical and biological recovery occurred, leading to improved instream conditions for a diverse macroinvertebrate community, including rheophilic taxa. Therefore, we concluded that sand addition is a promising restoration measure for incised lowland streams.  相似文献   

15.
Stream power is a measure of the main driving forces acting in a channel and determines a river's capacity to transport sediment and perform geomorphic work. Recent digital elevation models allow the calculation of channel gradient and consequently stream power at unprecedented spatial resolution, opening promising and novel opportunities to investigate river geomorphic processes and forms. The present paper investigates the suitability of map‐derived information on total and specific stream power (SSP) to identify dominant processes within the channel (i.e. erosion, transport or deposition). SSP has been already used to identify a threshold for channel stability. This paper tests this knowledge and investigates whether or not attributes of stream power profiles are statistically correlated with distinctive field morphological forms. Two gravel bed single‐thread English rivers are used as case studies, the Lune and the Wye. Available deposition and erosion features surveyed in the field from 124 different locations are used to classify channel reaches as erosion, transport or deposition dominated. Meaningful patterns emerge between the stream power attributes and the field‐based channel classification. An SSP threshold, which erosion is triggered, compares favourably with the ones in the literature. Information about upstream stream power profiles helps to determine the dominant processes. The joint configuration of local and upstream stream power information uniquely classifies reaches into four classes of different sensitivity to erosion and deposition. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Extreme storms in forested environments commonly increase inputs of coarse particulate organic matter (CPOM) and large wood (LW) to streams. Protruding boulders and bedforms, mid‐channel bars, and standing trees can trap CPOM and LW. These organic accumulations can become large enough to span the bankfull channel width, or the accumulations can be predominantly along the channel margins. We refer to both types of accumulations as transient organic jams (TOJs). TOJs can create diverse geomorphic and ecological effects in channel and floodplain environments. We use data collected from mountain streams of the Luquillo Mountains of north‐eastern Puerto Rico following September 2017 Hurricanes Irma and Maria. We examine the location, characteristics, and geomorphic effects of TOJs in channel segments representing diverse drainage areas and channel gradients. We ask three questions: (a) Does the downstream spacing of TOJs correlate with variables such as drainage area or channel gradient? (b) What variables best predict the volume of organic matter within individual TOJs or within a channel segment? And (c) is there a threshold within a river network that separates channel segments with channel‐spanning versus marginal TOJs? Datasets include multiple TOJs along each of 12 stream segments and presence/absence of channel‐spanning TOJs along an additional six streams. Data analysis with multiple linear regressions indicates that downstream spacing, average volume, and total volume per channel length of TOJs correlate significantly with bankfull channel width. Using the akaike information criterion with correction (AICc) model selection method, Strahler stream order has the most influence on the probability of TOJs being marginal or spanning.  相似文献   

17.
Urbanization and its associated stressors such as flow alteration, channel modification and poor water quality is a leading cause of ecological degradation to rivers and streams. Driven by public concern to address this issue, there has been a dramatic increase in urban restoration projects since 1990 using in‐stream structures. Attempts at restoring the ecological condition of urban streams using structures have produced varied results, but projects do not often meet planned ecological goals. A major challenge to improving the ecological health of urban streams is to better understand how to incorporate ecological assessments into a ‘restoration’ design framework with reasonable expectations for ecological recovery. A naturalization design framework was used in a project on a 0.62‐km reach of the North Branch of the Chicago River in Northbrook, Illinois. Initial surveys of channel morphology, habitat and biota identified poor pool‐riffle bed structure and fish biodiversity, which became the basis for research and development of a pool‐riffle structure specifically designed for constrained, low‐gradient channels. Habitat and fish surveys were conducted pre‐ and post‐construction. The project improved mesohabitat structure, and fish abundance, and biomass and diversity were greater for 2 years following construction (2002–2003) compared to 3 years prior to construction (1999–2001). However, the improved fish metrics were in the low range when compared to rural streams in the same ecoregion, and the fish community consisted primarily of tolerant, slow‐water species. Absent were intolerant and riffle dwelling species, such as insectivorous cyprinids and darters. Assessment of pre‐ and post‐project ecological condition and the use of species information provided a basis for ecologically informed design and expanded our understanding of the limitations to restoring urban streams. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Urbanization results in major changes to stream morphology and hydrology with the latter often cited as a primary stressor of urban stream ecosystems. These modifications unequivocally alter stream hydraulics, but little is known about such impacts. Hydraulic changes due to urbanization were demonstrated using two‐dimensional hydrodynamic model simulations, comparing urban and non‐urban stream reaches. We investigated three ecologically relevant hydraulic characteristics: bed mobilization, retentive habitat, and floodplain inundation, using hydraulic metrics bed shear stress, shallow slow‐water habitat (SSWH) area, and floodplain inundation area. We hypothesized that urbanization would substantially increase bed mobilization, decrease retentive habitat, and due to increased channel size would decrease floodplain inundation. Relative percent area of bed disturbance was 4 times higher, compared with that of the non‐urban stream at bankfull discharge. SSWH availability rapidly diminished in the urban stream as discharge increased, with SSWH area and patch size 2 times smaller than the non‐urban stream for a frequently occurring flow 0.7 times bankfull discharge. Floodplain inundation decreased in frequency and duration. These results demonstrate changes in hydraulics due to urbanization that may impact on physical habitat in streams. New “water sensitive” approaches to stormwater management could be enhanced by specification of hydraulic regimes capable of supporting healthy stream habitats. We propose that a complete management approach should include the goals of restoration and protection of natural hydraulic processes, particularly those that support ecological and geomorphic functioning of streams.  相似文献   

19.
Studies summarizing stream restoration projects in the US are outdated and omit the majority of restoration projects in Florida. To address this gap, we compiled stream restoration data from diverse sources to create a Florida Stream Restoration Database (FSRD, available at http://www.watershedecology.org/databases.html ) containing information on project type, location, completion date, and costs. The FSRD contains 178 projects categorized by restoration type, including riparian management (23%), stream reclamation (19%), flow modification (13%), bank stabilization (12%), channel reconfiguration (11%), in‐stream habitat improvements (11%), floodplain reconnection (6%), invasive species removal (4%), and dam removal (1%). Projects were spatially clustered into three geographic regions, providing insight on the diversity of initiatives, needs, and funding sources of land management agencies and private landowners that motivated restoration efforts. Projects in the Florida panhandle emphasized in‐stream habitat restoration, while peninsular projects were dominated by flow modification, and projects in the west central region focused on stream reclamation to mitigate surface mining practices and water quality and habitat improvements in tidal streams. Results suggest that Florida is spending much more on stream restoration than previously documented. Between 1979 and 2015, the mean and median stream restoration project costs in Florida were $15.4 million and $180 000, respectively, indicating a strongly skewed distribution because of the large Kissimmee River restoration project in central Florida. This work highlights the need for, and utility of, statewide and national restoration databases to improve restoration tracking. This need will become increasingly critical as more stringent water quality and habitat mitigation rules are implemented across the country. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Various effects of stream management on biotic communities have been suggested on the basis of observations and investigations in regularly managed streams throughout Europe, but only very sparse information is available about if and how stream management can be combined with maintaining a natural and diverse stream flora. Our study was carried out to investigate how weed cutting practice and frequency can affect macrophyte communities to provide knowledge for future decisions regarding management in streams. We chose an experimental approach and applied four different weed cutting practices (cutting full width, central channel, diagonal channels and no cutting) and frequencies within one stream reach for four years. We found only very limited changes over the four years in overall macrophyte diversity parameters following different management practices and there were no changes in macrophyte diversity parameters either as a function of the weed cutting frequency or method applied. In contrast we found directional changes in macrophyte composition following frequent cuttings of either the whole stream channel or a less comprehensive cutting of only one central channel for four years. In both cases the macrophyte communities changed towards a more Ranunculus dominated community while Potamogeton natans became less important in the community. This change seemed to reflect a higher tolerance of Ranunculus towards disturbance. On the basis of these results, we recommend that the management frequency in streams is limited and, if several cuttings are needed to prevent bank over‐flow, cutting in several narrow channels is preferable to cutting in one central channel as directional changes in plant communities are avoided. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号