首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper considers the containment control problem for multi‐agent systems with general linear dynamics and multiple leaders whose control inputs are possibly nonzero and time varying. Based on the relative states of neighboring agents, a distributed static continuous controller is designed, under which the containment error is uniformly ultimately bounded and the upper bound of the containment error can be made arbitrarily small, if the subgraph associated with the followers is undirected and, for each follower, there exists at least one leader that has a directed path to that follower. It is noted that the design of the static controller requires the knowledge of the eigenvalues of the Laplacian matrix and the upper bounds of the leaders’ control inputs. In order to remove these requirements, a distributed adaptive continuous controller is further proposed, which can be designed and implemented by each follower in a fully distributed fashion. Extensions to the case where only local output information is available and to the case of multi‐agent systems with matching uncertainties are also discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
This paper considers the containment control problems for both continuous‐time and discrete‐time multi‐agent systems with general linear dynamics under directed communication topologies. Distributed dynamic containment controllers based on the relative outputs of neighboring agents are constructed for both continuous‐time and discrete‐time cases, under which the states of the followers will asymptotically converge to the convex hull formed by those of the leaders if, for each follower, there exists at least one leader that has a directed path to that follower. Sufficient conditions on the existence of these dynamic controllers are given. Static containment controllers relying on the relative states of neighboring agents are also discussed as special cases. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
This study considers the formation problem for multi‐agent systems, which are described by the second‐order dynamics on nonlinear manifolds SE(2) and SE(3). In particular, the model of each agent contains information about its attitude. Using a consensus strategy, a control law is developed to guarantee that any desired formation can be achieved asymptotically under the conditions of complete or tree‐shaped communication topologies. Numerical simulations are presented to verify the theoretical results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
This paper investigates the cooperative containment control problem for discrete‐time multi‐agent systems with general linear dynamics. Distributed containment control protocols on the basis of state feedback design and output feedback design are proposed. Necessary and sufficient conditions are presented for both the state feedback and output feedback cases, which are less conservative than those in the literature. These conditions depend on the spectral properties of the topology matrix. Then, effective algorithms are proposed to obtain control gain matrices for both cases based on H type Riccati design. Simulation examples are provided finally to demonstrate the effectiveness of the proposed design methods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
This paper addresses the controllability of a switching network of multi‐agent systems with a leader obeying nearest‐neighbor communication rules. The leader is a particular agent acting as an external input to control other member agents. Some computationally efficient sufficient conditions for such multi‐agent systems to be controllable are derived. The results show that a multi‐agent system can be controllable even if each of its subsystem is not controllable, by appropriately selecting one of the agents as the leader and suitably designing the neighbor‐interaction rules via a switching topology. The fixed topology case is analyzed and new controllability conditions and formula of inputs for the desired formation of the network are presented. The controllability of a switching network of multi‐agent systems in the presence of communication delay is also investigated. Examples with numerical simulations are given to illustrate the theoretical results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, robust containment problem is investigated for a class of multi‐leader multi‐agent linear systems in the presence of time‐varying uncertainties. To achieve containment, a new kind of adaptive containment protocols are proposed for the multi‐agent systems. Specifically, the designed protocols consist of a continuous linear term and a discontinuous term. The linear term of the designed protocol is employed to achieve containment while the discontinuous term is utilized to eliminate the effect of uncertain dynamics on the achievement of containment. By using tools from non‐smooth analysis and algebraic graph theory, some efficient criteria for achieving robust containment in the closed‐loop multi‐agent systems are obtained and analyzed. One favorable property of the designed protocol is that containment in the closed‐loop multi‐agent systems can be achieved in a fully distributed fashion over any given connected and detail‐balanced communication graph without using any global information about the communication graph. The effectiveness of the analytical results is finally verified by performing numerical simulations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, the leader‐following consensus problem of uncertain high‐order nonlinear multi‐agent systems on directed graph with a fixed topology is studied, where it is assumed that the relative states of a follower and its neighbors are immeasurable and only the relative outputs are available. Nonlinear adaptive observers are firstly proposed for each follower to estimate the states of it and its neighbors, and an observer‐based distributed adaptive control scheme is constructed to guarantee that all followers asymptotically synchronize to a leader with tracking errors being semi‐globally uniform ultimate bounded. On the basis of algebraic graph theory and Lyapunov theory, the closed‐loop system stability analysis is conducted. Finally, numerical simulations are presented to illustrate the effectiveness and potential of the proposed new design techniques. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
The problem of cooperative synchronization of nonlinear multi‐agent systems with time delays is investigated in this paper. Compared with the existing works about synchronization (or consensus) of multi‐agent systems, the method in this paper provides a more general framework by considering nonlinear multi‐agent systems with time delays and impulsive disturbances. The model in this paper is sufficiently general to include a class of delayed chaotic systems. Based on the Lyapunov stability theory and algebraic graph theory, sufficient conditions are presented to guarantee the cooperative exponential synchronization for these multi‐agent delayed nonlinear systems. These conditions are expressed in terms of linear matrix inequalities, which can easily be checked by existing software tools. It is seen that the Lyapunov functions must be constructed based on the graph topology to prove synchronization. The well‐known master–slave (drive‐response) synchronization of two chaotic delayed systems is a special case of this paper, and therefore, the results in this paper are also useful for practical applications in secure communication. Simulation results verify the effectiveness of the proposed synchronization control algorithm. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
This paper focuses on the composite‐rotating consensus problem of second‐order multi‐agent systems with a leader and nonuniform time‐delays. First, a distributed control law is proposed to solve this problem. Second, by using the complex frequency domain analysis method, the maximal upper bound of time‐delays is deduced and it is proven that all agents eventually rotate around a common point while this point rotates around the origin, provided all communication time‐delays are less than the the maximal upper bound of time‐delays. Finally, simulation results are provided to demonstrate the effectiveness of the theoretical results.  相似文献   

10.
In this paper, the distributed consensus and tracking protocols are developed for the second‐order time‐varying nonlinear multi‐agent systems under general directed graph. Firstly, the consensus and tracking problems can be converted into a conventional stabilization control problem. Then a state transformation is employed to deal with the time‐varying nonlinearities. By choosing an appropriate time‐varying parameter and coupling strengths, exponential consensus and tracking of second‐order nonlinear multi‐agent systems can be achieved. Finally, a simulation is given to illustrate the effectiveness of the proposed consensus and tracking protocols. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
The coordination arrival problems of first‐order multi‐agent systems with the arriving structure and the time structure requirements are considered for the cases with no obstacle and obstacle. To describe the distributed coordination arrival problems, we first introduce needed definitions, such as coordination arrival, threat point, and arrival structure. By selecting the estimated value of the arriving time of the agent as variable, we then develop a central estimating algorithm, which is used to construct the arriving protocols. Based on the estimating algorithm, we build and analyze coordination arriving protocols for the proposed coordination arrival problems. Several simulation examples are presented to validate the proposed algorithms. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
This paper studies the consensusability of a continuous‐time linear time‐invariant multi‐agent system (MAS) with time delay in an undirected network with N nodes. We show that the MAS can achieve consensus if and only if N ? 1 time‐delay subsystems associated with the eigenvalues of the Laplacian matrix of the network are simultaneously asymptotically stable. By employing a linear matrix inequality (LMI) method, we present a controller design method for a MAS to reach consensus. We also obtain a bound on the maximum time delay for consensusability for a MAS with first‐order integrator dynamics by using frequency‐domain analysis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
This paper investigates the relative attitude formation control problem for a group of rigid‐body agents using relative attitude information on SO(3). On the basis of the gradient of a potential function, a family of distributed angular velocity control laws, which differ in the sense of a geodesic distance dependent function, is proposed. With directed and switching interaction topologies, the desired relative attitude formation is showed to be achieved asymptotically provided that the topology is jointly quasi‐strongly connected. Moreover, several sufficient conditions for the desired formation to be achieved exponentially and almost globally are given. Additionally, numerical examples are provided to illustrate the effectiveness of the proposed distributed control laws. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
This paper considers both semi‐global and global containment control for a second‐order multi‐agent system that is composed by a network of identical harmonic oscillators or double integrators with multiple leaders and input saturation. A distributed low gain feedback algorithm is proposed to solve the semi‐global containment control problem for the network whose topology is directed and initial condition is taken from any a priori given bounded set. In particular, by using a parametric Lyapunov equation approach, M‐matrix properties and algebraic graph theory, an upper bound of the low gain parameter is estimated such that the low gain feedback matrix can be analytically determined without involving numerical computation. Furthermore, under the assumption that the induced subgraph formed by the followers is strongly connected and detail balanced, two linear feedback protocols are designed for coupled harmonic oscillators and coupled double integrators, respectively, to asymptotically achieve the global containment control of the network with any initial condition. Finally, numerical examples are given to illustrate the effectiveness of the theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
This paper considers the consensus tracking control problem for general linear multi‐agent systems with unknown dynamics in both the leader and all followers. Based on parameterizations of the unknown dynamics of all agents, two decentralized adaptive consensus tracking protocols, respectively, with dynamic and static coupling gains, are proposed to guarantee that the states of all followers converge to the state of the leader. Furthermore, this result is extended to the robust adaptive consensus tracking problem in which there exist parameter uncertainties and Lipschitz‐type disturbances in the network. It is also shown that the parameter estimation errors converge to zero based on contradiction method and Lyapunov function approach. Finally, a simulation example is provided to illustrate the theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Time‐varying output formation control problems for linear multi‐agent systems with switching topologies are studied, where two types of switching topologies are considered: (1) the topology is undirected and jointly connected, and 2) each topology is directed and has a spanning tree. An output formation protocol under switching topologies is constructed using the outputs of neighboring agents via dynamic output feedback. Two algorithms are proposed to design the dynamic protocols under both jointly connected topologies and switching directed topologies. Time‐varying output formation feasibility conditions are given to describe the compatible relationship among the desired time‐varying output formation, the dynamics of each agent, and the switching topologies. The stability of the closed‐loop multi‐agent systems under the proposed two algorithms is investigated based on the common Lyapunov functional theory and the piecewise Lyapunov functional theory, respectively. In the case where the topologies are jointly connected, time‐varying output formation can be achieved for multi‐agent systems using the designed protocol if the given time‐varying output formation satisfies the feasible constraint. For the case where the switching topologies are directed and have a spanning tree, the time‐varying output formation can be realized if the output formation feasibility constraint is satisfied and the dwell time is larger than a positive threshold. Moreover, approaches to determine the output formation references are provided to describe the macroscopic movement of the time‐varying output formation. Finally, numerical simulation results are presented to demonstrate the effectiveness of the theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
This paper investigates the problem of finite‐time consensus (FTC) for second‐order nonlinear multi‐agent systems when the velocity information is unavailable. Based on the global finite‐time stability theory and homogeneity with dilation, a class of novel finite‐time consensus protocols are proposed for the multi‐agent systems. The protocol design is divided into two parts. First, when all the state information of the agents are measurable, a new continuous state feedback is designed to achieve FTC. Then, when the velocity information is unmeasurable, two finite‐time convergent discontinuous observers are presented to estimate the velocities of the followers and the leader, respectively, which further ensure the final FTC for the multi‐agent systems. Finally, one example is given to demonstrate the efficiency of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
This paper investigates robust consensus for multi‐agent systems with discrete‐time dynamics affected by uncertainty. In particular, the paper considers multi‐agent systems with single and double integrators, where the weighted adjacency matrix is a polynomial function of uncertain parameters constrained into a semialgebraic set. Firstly, necessary and sufficient conditions are provided for robust consensus based on the existence of a Lyapunov function polynomially dependent on the uncertainty. In particular, an upper bound on the degree required for achieving necessity is provided. Secondly, a necessary and sufficient condition is provided for robust consensus with single integrator and nonnegative weighted adjacency matrices based on the zeros of a polynomial. Lastly, it is shown how these conditions can be investigated through convex programming by exploiting linear matrix inequalities and sums of squares of polynomials. Some numerical examples illustrate the proposed results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we study the robust consensus tracking problem for a class of high‐order multi‐agent systems with unmodelled dynamics and unknown disturbances. A continuous robust state feedback control algorithm is proposed to enable the agents to achieve robust consensus tracking of a desired trajectory. By utilizing Lyapunov analysis methods and an invariance‐like theorem, sufficient conditions for semi‐global asymptotic consensus tracking are established. A robust output feedback control algorithm is designed to obtain a uniformly ultimately bounded consensus tracking result. Numerical simulations are provided to show the effectiveness of the proposed algorithms. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
This paper addresses the robust consensus control design for input‐delayed multi‐agent systems subject to parametric uncertainties. To deal with the input delay, the Artstein model reduction method is employed by a state transformation. The input‐dependent integral term that remains in the transformed system, owing to the model uncertainties, is judiciously analysed. By carefully exploring certain features of the Laplacian matrix, sufficient conditions for the global consensus under directed communication topology are identified using Lyapunov–Krasovskii functionals in the time domain. The proposed control only relies on relative state information of the subsystems via network connections. The effectiveness and robustness of the proposed control design are demonstrated through a numerical simulation example. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号