首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
‘Downstream’ hydraulic geometry relationships describe the variation of water depth, velocity, and water surface width between rivers of different size at a characteristic discharge, whereas ‘at-a-station’ geometry describes the variation of hydraulic geometry with discharge within a reach. The instream flow incremental methodology (IFIM) also predicts the variation in water depth and velocity with discharge at a reach scale, so that hydraulic geometry relationships can potentially be used as a preliminary method of habitat assessment. Hydraulic geometry relationships were calculated from instream habitat surveys of 73 New Zealand river reaches with mean flows varying from 0.6 to 204 m3 s−1 and an average gradient of 0.0047. The exponents of both at-a-station and downstream hydraulic geometry relationships were within the range of values reported in other international studies, although the exponents indicated that New Zealand rivers tended to experience greater changes in velocity and less in depth than the international average, probably because of high average gradient. The frequency distributions of water depth and velocity were positively skewed in most rivers, and on average the modal velocity was 90% of the mean velocity and the modal depth was 80% of mean depth. The use of at-a-station hydraulic geometry relationships for instream habitat assessment was compared to depth and velocity predictions using habitat simulation techniques (IFIM) in two streams. Measurements of stream width and depth at five cross-sections at two calibration discharges were used to establish at-a-station hydraulic geometry relationships. These predicted mean depth and velocity within 8% of the reach average values of the IFIM surveys within the range of calibration discharges and within 10–15% of the IFIM reach average when extrapolated beyond the calibration discharges. Hydraulic geometry can be used to indicate whether hydraulic conditions approach a ‘threshold’ such as a minimum acceptable depth or velocity, thus predicating the need for more extensive habitat survey and analysis. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
Aquatic organisms with different adaptations are used as indicators in physical habitat simulation system models. Those adaptations are critical for determining the shape of the weighted usable area/width curve and for recommending values of environmental flows. The main objective of this study is to compare the use of benthic native species (Astroblepus taczanowskii and Astroblepus vanceae) versus the introduced Oncorhynchus mykiss (rainbow trout) as target indicators for PHABSIM modelling in the Andean–Amazon piedmont rivers. We used adjusted probability distribution functions with L‐moments analyses for developing curves of use and preference to evaluate the efficiency of each indicator. Two hydraulic modelling sections were established in the Ulcumayo River with 21 and 27 cross sections, respectively. Native benthic species are usually dominant but scarcely used as focus organisms for environmental flows modelling. These species are associated with fast running and shallow waters, which makes them potentially more sensitive to the effects of flow reduction. Our results indicated that the native species were more restricted to velocity and depth than O. mykiss. Using selection curves in PHABSIM modelling, it is required between 10% to 94% of the mean monthly flow to preserve 90% of the available habitat for Astroblepus during the dry season (May to November). In contrast, rainbow trout requires 5% to 88% of the mean monthly flow. We conclude that a multispecies approach is useful for determining the required environmental instream flows contributing to a better sustainable condition for the Neotropical mountain rivers.  相似文献   

3.
Quantifying the transferability across stream reaches and sampling occasions of models relating the density of aquatic taxa to microhabitat hydraulics are important for increasing our understanding of the mechanisms explaining microhabitat selection. We revisited data collected at multiple occasions in two regions, that is, in nine reaches of seven German streams and in four reaches of a large French river, to provide detailed information by taxon on the transferability of hydraulic preferences of aquatic macroinvertebrates. In each region and for each taxon, we tested the statistical significance of a regional preference model relating density to microhabitat hydraulics simultaneously in all surveys (i.e. reach–occasion combinations). The transferability of hydraulic preferences was assessed using cross‐validation procedures within each region. The regional models showed significant associations with microhabitat hydraulics for 56% of the 151 taxa collected in Germany and for 67% of 66 taxa in France. Cross validations indicated that regional models significantly explained density variations within independent surveys for 60% of the cases in Germany and 54% in France. We conclude that both regional and survey‐specific models are useful in specific studies, depending on the taxa considered and the spatial extent and objectives of the application. Graphs of all raw data and models are supplied as supporting information. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Microhabitat selection models are frequently used in rivers to evaluate anthropogenic effects on aquatic organisms. Fish models are generally developed from few rivers, with debatable statistical treatments for coping with overdispersed abundance distributions. Analyses of data from multiple rivers are needed to test their transferability and increase their relevance for stakeholders. Using 3,528 microhabitats sampled in nine French rivers during 129 surveys, we developed models for 35 specific size classes of 22 fish species. We used mixed‐effects generalized linear models (accounting for multiple surveys), involving B‐spline transformations (accounting for nonlinear responses) and assuming a negative binomial distribution (accounting for abundance overdispersion). We compared models of increasing complexity: no selection (M1), an “average” selection similar in all surveys (M2), two models with different selection across surveys (M3–M4). Of 132 univariate cases (specific size classes by habitat), 63% indicated selection for depth, 71% for velocity, 45% for substratum size and 13% for substratum heterogeneity. A total of 50 models were retained, involving 26/35 specific size classes. Model fits indicated low explained deviance (R2MF < 0.19) and higher rank correlations (ρ < 0.69) between observed and modelled values. However, Bayesian posterior predictive checks validated these results since excellent fits would generate R2MF lower than 0.59 and ρ lower than 0.78. We found high transferability among rivers and dates, because (a) M2 was the most appropriate in 26/50 cases; (b) the R2MF and ρ values by M2 was, respectively, 72% and 75% of that explained by the complex M4 and (c) independent river cross‐validations showed good transferability. Bivariate models for selected specific size classes improved univariate model fits (ρ from 0.30 to 0.38). Overall, using a nonlinear mixed‐effect approach, our results confirmed the relevance of “average” models based on several rivers for developing helpful e‐flow tools. Finally, our modelling approach opens opportunities for integrating additional effects as the spatial distribution of competitors.  相似文献   

5.
Observations of the presence or density of individuals in specific habitats are often used to develop predictive models of preferential habitat use and habitat suitability curves. However, most studies only use day‐time observations to model habitat associations. In this paper, we present day and night observations of habitat use by two abundant species of freshwater shrimp, Atya lanipes and Xiphocaris elongata, in a tropical montane stream. At night, the number of shrimp observed was an order of magnitude greater than during the day. Habitat preferences of Atya changed, with more individuals using low velocity edge sites at night. Xiphocaris were not readily visible during the day, but were very abundant at night. Our results suggest that habitat models cannot be based only on day‐time observations. Because the level of nocturnal activity is not known for most species of fish and invertebrates, studies of habitat preferences should include both day and night observations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
We describe and demonstrate a model (Benthic Invertebrate Time Series Habitat Simulation) for calculating the effect of changes to flow regimes on benthic invertebrate habitat and population dynamics. The following inputs are required: a hydrograph (discharge time series), habitat–discharge relationship, disturbance–discharge relationship, wetted width–discharge relationship and a recolonization time series. Habitat–discharge, disturbance–discharge and wetted width–discharge relationships are common outputs from instream hydraulic habitat models (e.g. Physical Habitat Simulation, River Hydraulic Habitat Simulation and River2D). Hydraulic habitat models calculate a combined habitat suitability index from physical habitat suitability curves for water depth, velocity and substrate composition and weight this by area to give a weighted usable area (WUA). Because conventional invertebrate habitat suitability curves are based on density estimates, the combined habitat suitability index can be treated as an index of density and WUA treated as an index of potential relative abundance (at the reach scale) in the absence of disturbance due to flow variation (flooding and drying) and biotic processes. Our approach begins with WUA and calculates realizable suitable habitat (i.e. relative abundance) by taking into account the resetting of benthic invertebrate densities by floods and drying and recovery (or accrual) rates and times. The approach is intended mainly to compare the relative amounts of productive invertebrate habitat sustained by natural and modified flow regimes, but it also has the potential for investigating the influence of flow variation on invertebrate population dynamics. We anticipate that the model will be particularly useful for assessing effects of changes in flow regimes caused by diversions, abstractions or water storage on annual benthic invertebrate productivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The River2D two‐dimensional hydraulic and habitat model was used to simulate fall‐run Chinook salmon (Oncorhynchus tschawytscha) spawning and fry and juvenile rearing habitat of the first phase of a stream channel restoration project on Clear Creek, California. Habitat was simulated for a range of stream flows: (1) before restoration; (2) based on the restoration design; (3) immediately after restoration; and (4) after one and two large flow events. Hydraulic and structural data were collected for three sites before restoration, and prerestoration habitat was simulated. Habitat simulated for these sites was extrapolated to the prerestoration area based on habitat mapping. The topographical plan for the restoration was used to simulate the anticipated habitat after restoration. Although the restoration increased spawning habitat, it was less successful for rearing habitat. Channel changes associated with high‐flow events did not entirely negate the benefits of the restoration project. The results of this study point out the need for models that can simulate the changes in channel topography associated with high‐flow events, which could then be used to simulate habitat over time. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

8.
Increased hydraulic diversity could be a means to promote fish diversity in rivers, but little is known of the behaviour of fish in hydraulic environments. This study concerns the behaviour of two species of small native Australian freshwater fish in variable hydraulic environments and ecological habit, with regard for (a) whether the apparent differences in swimming ability are reflected in the behaviour of the species and (b) the influence of changing hydraulic conditions on their patterns of use. An artificial channel was constructed with three levels of discharge, and fish were allowed to swim freely for 3 h without human interference. Their movements and habitat choices reflected their swimming ability and ecological habit, in that the stronger swimming, pelagic common galaxias (Galaxias maculatus) spent most time cruising in the open channel, preferring the turbulent inflow, and the demersal flat‐headed gudgeon (Philypnodon grandiceps) remained in the shelter of boulders. In effect, the galaxias changed their behaviour with changes in hydraulic conditions, while the gudgeons continued to use their preferred habitat. This study, therefore, provides support for the use of hydraulic diversity as a tool to foster fish diversity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Reach‐scale physical habitat assessment scores are increasingly used to make decisions about management. We characterized the spatial distribution of hydraulic habitat characteristics at the reach and sub‐reach scales for four fish species using detailed two‐dimensional hydraulic models and spatial analysis techniques (semi‐variogram analyses). We next explored whether these hydraulic characteristics were correlated with commonly used reach‐scale geomorphic assessment (RGA) scores, rapid habitat assessment (RHA) scores, or indices of fish biodiversity and abundance. River2D was used to calculate weighted usable areas (WUAs) at median flows, Q50, for six Vermont streams using modelled velocity, depth estimates, channel bed data and habitat suitability curves for blacknose dace (Rhinichthys atratulus), brown trout (Salmo trutta), common shiner (Notropis cornutus) and white sucker (Catostomus commersoni) at both the adult and spawn stages. All stream reaches exhibited different spatial distributions of WUA ranging from uniform distribution of patches of high WUA to irregular distribution of more isolated patches. Streams with discontinuous, distinct patches of high score WUA had lower fish biotic integrity measured with the State of Vermont's Mixed Water Index of Biotic Integrity (MWIBI) than streams with a more uniform distribution of high WUA. In fact, the distribution of usable habitats may be a determining factor for fish communities. A relationship between predicted WUAs averaged at the reach scale and RGA or RHA scores was not found. Future research is needed to identify the appropriate spatial scales to capture the connections between usable patches of stream channel habitat. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
We sampled natural and reconstructed side‐arms during different stages of hydrological connectivity with a large floodplain river in northern New Zealand, to determine whether re‐establishment of connectivity would be an effective strategy for restoring plankton communities in former side‐arms. Connectivity between side‐arms and the river was moderated by water level and influenced flow rates and closure of inlets and outlets. Physicochemical conditions were more strongly related to the connectivity phase than to habitat type (river, natural or reconstructed side‐arm), except during low connectivity when natural side‐arms in particular were characterised by higher ammonium (NH4‐N) and total phosphorus (P) concentrations, as well as specific conductivity. Dissolved reactive phosphorus (PO4‐P), water temperature, conductivity and dissolved oxygen were identified as explanatory variables of phytoplankton and zooplankton community composition, which along with total nitrogen (phytoplankton) or total suspended solids (zooplankton) explained 44–52% of variation. Phytoplankton community composition and the abundance of several dominant or discriminatory taxa were affected by connectivity but not habitat type, whereas habitat and connectivity both had significant effects on zooplankton communities and abundances of the cladoceran Bosmina meridionalis. Significant interactions between connectivity and paired habitat types occurred for abundances of the diatom Asterionella, the cryptophyte Cryptomonas, the rotifer Synchaeta oblonga and cyclopoid copepods, reflecting differential responses to connectivity among habitats by these taxa. Overall, these results underscore the importance of hydrological connectivity between side‐arms and rivers in moderating plankton community composition, and highlight unpredictable trajectories of community development and alternative transient states that can occur soon after side‐arm reconnection. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Minimum flows in rivers and streams aim to provide a certain level of protection for the aquatic environment. The level of protection is described by a measure such as a prescribed proportion of historic flows, wetted perimeter or suitable habitat. Conflicting minimum flow assessments from different instream flow methods are arguably the result of different environmental goals and levels of protection. The goals, the way in which levels of protection are specified, and the relationship between levels of protection and the aquatic environment are examined for three major categories of flow assessment methods: historic flow, hydraulic geometry and habitat. Basic conceptual differences are identified. Flow assessments by historic flow and hydraulic methods are related to river size and tend to retain the ‘character’ of a river. Habitat-based methods make no a priori assumptions about the natural state of the river and flow assessments are based primarily on water depth and velocity requirements. Flow and hydraulic methods assume that lower than natural flows will degrade the stream ecosystem, whereas habitat methods accept the possibility that aspects of the natural ecosystem can be enhanced by other than naturally occurring flows. Application of hydraulic and habitat methods suggests that the environmental response to flow is not linear; the relative change in width and habitat with flow is greater for small rivers than for large. Small rivers are more ‘at risk’ than large rivers and require a higher proportion of the average flow to maintain similar levels of environmental protection. Habitat methods are focused on target species or specific instream uses, and are useful where there are clear management objectives and an understanding of ecosystem requirements. Flow and hydraulic methods are useful in cases where there is a poor understanding of the ecosystem or where a high level of protection for an existing ecosystem is required. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
Engineered log jams (ELJs) are increasingly being used in large rivers to create fish habitat and as an alternative to riprap for bank stabilization. However, there have been few studies that have systematically examined how juvenile salmonids utilized these structures relative to other available habitat. We examined Chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch) and trout (O. mykiss and O. clarki) response to the placement of engineered log jams (ELJs) in the Elwha River, Washington State, USA. We used summer snorkel surveys and a paired control‐treatment design to determine how engineered log jams in a large river system affect the density of juvenile salmon. We hypothesized that densities of juvenile salmonids would be greater in habitats with ELJs than in habitats without ELJs in the Elwha River and that this ELJ effect would vary by species and size class. Juvenile salmonid density was higher in ELJ units for all control‐treatment pairs except for one pair in 2002 and one pair in 2003. Positive mean differences in juvenile salmon densities between ELJ and non‐ELJ units were observed in two of four years for all juvenile salmon, trout greater than 100 mm and juvenile Chinook salmon. Positive mean differences occurred in one of 4 years for juvenile coho salmon and trout less than 100 mm. The results suggest that ELJs are potentially useful for restoring juvenile salmon habitat in the Elwha River, Washington State, USA. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Hydropeaking presents one of the large impacts on river ecology and is gaining importance because of an increasinlgy volatile energy market with high portions of new renewable energies dependent on local climate conditions. This study presents the application of a fuzzy logic model for the investigation of macrobenthic habitats under hydropeaking conditions in the Norwegian river Surna. Preference data of the three taxa Baetis rhodani, Hydroptila spp. and Allogamus auricollis with distinctively different habitat requirements related to near‐bottom flow forces (high/low forces, and narrow range) are used. These data are transferred into the multivariate fuzzy rule‐based physical habitat model Computer Aided Simulation of Instream flow and Riparia in order to integrate water depth and river bed substrate as additional parameters. Permanently available habitats (persistent habitats) are assessed for different scenarios of hydropeaking operation. It is found that the amount of persistently high‐quality habitat is closely related to the size and range of fluctuations in hydraulic conditions occuring during hydropeaking events. Effects are much more distinct for species with a narrow range of hydraulic preference. The integration of water depth in the simulations has a noticable impact on the amount and quality of predicted habitats. Substrate conditions in the investigation site are homogeneous and, in the specific case considered, do not have a significant impact. The study suggests persistent habitats as a suitable indicator of hydropeaking impact on organisms with low mobility. The persistent habitat approach takes into account that organisms with a low mobility and a distinct range of tolerance related to hydraulic stress tend to settle in areas with permanently stable conditions. Multivariate aspects are accounted through the fuzzy rule‐based approach and do clearly affect habitat predictions. Habitat requirements of species particularly sensitive to hydropeaking are proposed for the investigation and application in the future. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The mesoscale (100–102 m) of river habitats has been identified as the scale that simultaneously offers insights into ecological structure and falls within the practical bounds of river management. Mesoscale habitat (mesohabitat) classifications for relatively large rivers, however, are underdeveloped compared with those produced for smaller streams. Approaches to habitat modelling have traditionally focused on individual species or proceeded on a species‐by‐species basis. This is particularly problematic in larger rivers where the effects of biological interactions are more complex and intense. Community‐level approaches can rapidly model many species simultaneously, thereby integrating the effects of biological interactions while providing information on the relative importance of environmental variables in structuring the community. One such community‐level approach, multivariate regression trees, was applied in order to determine the relative influences of abiotic factors on fish assemblages within shoreline mesohabitats of San Pedro River, Chile, and to define reference communities prior to the planned construction of a hydroelectric power plant. Flow depth, bank materials and the availability of riparian and instream cover, including woody debris, were the main variables driving differences between the assemblages. Species strongly indicative of distinctive mesohabitat types included the endemic Galaxias platei. Among other outcomes, the results provide information on the impact of non‐native salmonids on river‐dwelling Galaxias platei, suggesting a degree of habitat segregation between these taxa based on flow depth. The results support the use of the mesohabitat concept in large, relatively pristine river systems, and they represent a basis for assessing the impact of any future hydroelectric power plant construction and operation. By combing community classifications with simple sets of environmental rules, the multivariate regression trees produced can be used to predict the community structure of any mesohabitat along the reach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Both water managers and researchers have the same goal when it comes to fish conservation, namely, to sustain, to improve or to restore aquatic habitat. To this aim, two‐dimensional (2D) hydrodynamic models have been widely used in aquatic habitat studies because they simulate flow with high accuracy and can predict habitat dynamics. The River2D model is able to integrate the habitat suitability curves for fish life stages with the simulated depth and velocity fields and the riverbed characteristics of substrate and cover, thereby estimating the corresponding weighted usable area, and thus predicting the potential distribution of fish species in the river. However, little is known about the in situ variability associated with such predictions both for hydraulic and biological data, whereas ecological responses are known to be driven by variability. Moreover, when calculating habitat availability, differences can be found by considering in the weighted usable area formulation substrate or cover or even both. To test the level of predictive accuracy of hydraulic and biological simulations, we modelled the habitat use by two fish species, the Iberian barbel Luciobarbus bocagei and the Iberian straight‐mouth nase Pseudochondrostoma polylepis, according to their requirements for depth, velocity, substrate and cover and then compared measured and simulated hydraulic and biological outcomes using the River2D model. Results indicate that 2D simulation depends on data collection, especially the density and location of bed topography points. Substantial differences were found in the biological responses. Results may differ when choosing different habitat availability variables. Similarly, habitat use may also be influenced by other biotic and abiotic interactions occurring in ecosystems, and restoration planning should be aware of such variability. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Harmful algal blooms are occurring in large river ecosystems and at the mouth of large rivers with increasing frequency. In lentic systems, the chemical and physical conditions that promote harmful algal blooms are somewhat predictable but tracking prevalence and conditions that promote harmful algal blooms in lotic systems is much more difficult. We captured two of the most extreme discharge years within the last 20 years occurring in the Upper Mississippi River, allowing a natural experiment that evaluated how major shifts in discharge drive environmental variation and associated shifts in phytoplankton. Statistical models describing significant environmental covariates for phytoplankton assemblages and specific taxa were developed and used to identify management‐relevant numeric breakpoints at which environmental variables may promote the growth of specific phytoplankton and/or cyanobacteria. Our analyses supported that potentially toxin‐producing cyanobacteria dominate under high phosphorus concentration, low nitrogen concentration, low nitrogen‐to‐phosphorus ratio, low turbulence, low flushing, adequate light and warm temperatures. Cyanobacteria dominated in 2009 when low discharge and low flushing likely led to optimal growth environments for Dolichospermum, Aphanizomenon and Microcystis. Rarely will a single factor lead to the dominance, but multiple positive factors working in concert can lead to cyanobacteria proliferation in large rivers. Certain isolated backwaters with high phosphorus, low nitrogen, warm water temperatures and low potential for flushing could benefit from increased connection to channel inputs to reduce cyanobacterial dominance. Numerous examples of this type of habitat currently exist in the Upper Mississippi River and could benefit from reconnection to channel habitats.  相似文献   

18.
Research on tropical fish ecology in South America is focused mainly on the effect of environmental variables on aquatic organisms. Physical, chemical and biological characteristics of water measured at a local scale (local variables) are used, although geomorphological and hydrological factors measured at a regional scale (regional variables), as well as temporal and spatial heterogeneity, can also be considered. However, the use of this multi‐scale approach increases the perceived complexity, heterogeneity and variability of rivers. Thus, it is important to determine the magnitude of habitat variability and those parameters having the greatest influence on it. In this study, 28 stations distributed on 16 different rivers in French Guiana were sampled during high water at a meso spatial scale. Physical features of the rivers were sampled along an 800‐m stretch, where nine transversal transects were established on the main channel. At each river, 17 local and six regional variables were measured. Local variables relating to the physical characteristics of the channel bank and main channel and regional variables characterizing the whole basin and the position of the station in the basin were qualitatively and quantitatively described. All variables were submitted to multivariate analysis in order to determine their relative contribution to total variance. Two quantitative regional variables (drainage area upstream from station and river drainage basin), five quantitative local variables (channel width, water temperature, channel depth, Secchi transparency and conductivity) and one qualitative local variable (channel substrate) were shown to differentiate the 16 rivers sampled. This result shows the poor contribution of qualitative variables compared with quantitative ones. Gradual change in qualitative variables is probably responsible for this poor contribution to the total variance; thus, the use of such variables is not possible for spatial habitat differentiation in this study. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
Decisions on managed flow releases in regulated rivers should be informed by the best available science. To do this, resource managers require adequate information regarding the tradeoffs between alternative methodologies. In this study, we quantitatively compare two competing multivariate habitat models for juvenile Chinook salmon (Oncorhynchus tschawytscha), a highly valued fish species under serious decline in a large extent of its range. We conducted large‐scale snorkel surveys in the American River, California, to obtain a common dataset for model parameterization. We built one habitat model using Akaike Information Criterion analysis and model averaging, ‘model G’, and a second model by using a standard method of aggregating univariate habitat models, ‘model A’. We calculated Cohen's kappa, percent correctly classified, sensitivity, specificity and the area under a receiver operator characteristic to compare the ability of each model to predict juvenile salmon presence and absence. We compared the predicted useable habitat of each model at nine simulated river discharges where usable habitat is equal to the product of a spatial area and the probability of habitat occupancy at that location. Generally, model G maintained greater predictive accuracy with a difference within 10% across the diagnostic statistics. Two key distinctions between models were that model G predicted 17.2% less useable habitat across simulated flows and had 5% fewer false positive classifications than model A. In contrast, model A had a tendency to over predict habitat occupancy and under predict model uncertainty. The largest discrepancy between model predictions occurred at the lowest flows simulated and in the habitats most likely to be occupied by juvenile salmon. This study supports the utility and quantitative framework of Akaike Information Criterion analysis and model averaging in developing habitat models. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Hydraulic and substratum conditions have been identified as two stream features which affect the benthic community composition, abundance and distribution. However, little attention has been given to the influence of hydraulic variables in large river beds. The aim of this study was to analyse the incidence of the near‐bottom hydraulic conditions and other environmental variables on the density of Narapa bonettoi (Oligochaeta, Narapidae), a typical and dominant species found in sandy bed rivers of diverse hierarchy of the Paraná River basin. A large amount of existing and available benthic data were used. The highest correlations among N. bonettoi densities and environmental variables were obtained with the hydraulic variables of friction Reynolds number (R*) and shear stress (τ0); the substratum type (sand, silt and clay) and organic matter content. The results show that N. bonettoi density would be related with the hydraulic variables following a ‘bell‐shaped’ tendency, e.g. with the friction Reynolds number, N. bonettoi would have a preference for transition values of turbulence (~40 < R* < ~50), which is equivalent to τ0 between ~0.6 and ~0.8 kg ?2. Densities show a slight decreasing tendency toward the maximum R* values, suggesting that the species does not support a completely developed turbulence (R* > ~70). Significant but negative correlations were reported in the literature between benthic macroinvertebrates typical of smaller and steeper streams and R* values far beyond the threshold 70 value. N. bonettoi shows a clear preference for a completely sandy substratum and for sand particles sizes around 300 µm. Finally, considering the important role played by the hydraulic variables on the benthic community studied herein, the contagious distribution pattern of N. bonettoi, reported by other authors, would be principally linked with the interactions between current and sediment near the bottom rather than with the mobility of these organisms. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号