首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper focuses on the analysis and the design of event‐triggering scheme for discrete‐time systems. Both static event‐triggering scheme (SETS) and adaptive event‐triggering scheme (AETS) are presented for discrete‐time nonlinear and linear systems. What makes AETS different from SETS is that an auxiliary dynamic variable satisfying a certain difference equation is incorporated into the event‐triggering condition. The sufficient conditions of asymptotic stability of the closed‐loop event‐triggered control systems under both two triggering schemes are given. Especially, for the linear systems case, the minimum time between two consecutive control updates is discussed. Also, the quantitative relation among the system parameters, the preselected triggering parameters in AETS, and a quadratic performance index are established. Finally, the effectiveness and respective advantage of the proposed event‐triggering schemes are illustrated on a practical example. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
We consider general discrete‐time nonlinear systems (of arbitrary nonlinear growth) with time‐varying input delays and design an explicit predictor feedback controller to compensate the input delay. Such results have been achieved in continuous time, but only under the restriction that the delay rate is bounded by unity, which ensures that the input signal flow does not get reversed, namely, that old inputs are not felt multiple times by the plant (because on such subsequent occasions, the control input acts as a disturbance). For discrete‐time systems, an analogous restriction would be that the input delay is non‐increasing. In this work, we do not impose such a restriction. We provide a design and a global stability analysis that allow the input delay to be arbitrary (containing intervals of increase, decrease, or stagnation) over an arbitrarily long finite period of time. Unlike in the continuous‐time case, the predictor feedback law in the discrete‐time case is explicit. We specialize the result to linear time‐invariant systems and provide an explicit estimate of the exponential decay rate. Carefully constructed examples are provided to illustrate the design and analytical challenges. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
This paper mainly studies the locally/globally asymptotic stability and stabilization in probability for nonlinear discrete‐time stochastic systems. Firstly, for more general stochastic difference systems, two very useful results on locally and globally asymptotic stability in probability are obtained, which can be viewed as the discrete versions of continuous‐time Itô systems. Then, for a class of quasi‐linear discrete‐time stochastic control systems, both state‐ and output‐feedback asymptotic stabilization are studied, for which, sufficient conditions are presented in terms of linear matrix inequalities. Two simulation examples are given to illustrate the effectiveness of our main results.  相似文献   

4.
This paper studies the problem of designing interval observers for a family of discrete‐time nonlinear systems subject to parametric uncertainties and external disturbances. The design approach states that the interval observers are constituted by a couple of preserving order observers, one providing an upper estimation of the state while the other provides a lower one. The design aim is to apply the cooperative and dissipative properties to the discrete‐time estimation error dynamics in order to guarantee that the upper and lower estimations are always above and below the true state trajectory for all times, while both estimations asymptotically converge towards a neighborhood of the true state values. The approach represents an extension to the original method proposed by the authors, which focuses on the continuous‐time nonlinear systems. In some situations, the design conditions can be formulated as bilinear matrix inequalities (BMIs) and/or linear matrix inequalities (LMIs). Two simulation examples are provided to show the effectiveness of the design approach.  相似文献   

5.
In this paper, an observer‐based control approach is proposed for uncertain stochastic nonlinear discrete‐time systems with input constraints. The widely used extended Kalman filter (EKF) is well known to be inadequate for estimating the states of uncertain nonlinear dynamical systems with strong nonlinearities especially if the time horizon of the estimation process is relatively long. Instead, a modified version of the EKF with improved stability and robustness is proposed for estimating the states of such systems. A constrained observer‐based controller is then developed using the state‐dependent Riccati equation approach. Rigorous analysis of the stability of the developed stochastically controlled system is presented. The developed approach is applied to control the performance of a synchronous generator connected to an infinite bus and chaos in permanent magnet synchronous motor. Simulation results of the synchronous generator show that the estimated states resulting from the proposed estimator are stable, whereas those resulting from the EKF diverge. Moreover, satisfactory performance is achieved by applying the developed observer‐based control strategy on the two practical problems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper we consider a linear, discrete‐time system depending multi‐affinely on uncertain, real time‐varying parameters. A new sufficient condition for the stability of this class of systems, in terms of a feasibility problem involving linear matrix inequalities (LMIs), is obtained under the hypothesis that a bound on the rate of variation of the parameters is known. This condition, obtained by the aid of parameter dependent Lyapunov functions, obviously turns out to be less restrictive than that one obtained via the classical quadratic stability (QS) approach, which guarantees stability in presence of arbitrary time‐varying parameters. An important point is that the methodology proposed in this paper may result in being less conservative than the classical QS approach even in the absence of an explicit bound on the parameters rate of variation. Concerning the synthesis context, the design of a gain scheduled compensator based on the above approach is also proposed. It is shown that, if a suitable LMI problem is feasible, the solution of such problem allows to design an output feedback gain scheduled dynamic compensator in a controller‐observer form stabilizing the class of systems which is dealt with. The stability conditions are then extended to take into account L2 performance requirements. Some numerical examples are carried out to show the effectiveness and to investigate the computational burden required by the proposed approach. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, a high‐order internal model (HOIM)‐based iterative learning control (ILC) scheme is proposed for discrete‐time nonlinear systems to tackle the tracking problem under iteration‐varying desired trajectories. By incorporating the HOIM that is utilized to describe the variation of desired trajectories in the iteration domain into the ILC design, it is shown that the system output can converge to the desired trajectory along the iteration axis within arbitrarily small error. Furthermore, the learning property in the presence of state disturbances and output noise is discussed under HOIM‐based ILC with an integrator in the iteration axis. Two simulation examples are given to demonstrate the effectiveness of the proposed control method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
This paper is concerned with the transient performance improvement in tracking control problems for linear multivariable discrete‐time singular systems subject to actuators saturation. A composite nonlinear feedback control strategy is considered, and the resulting controller consists of a linear feedback law and a nonlinear feedback law without any switching element. The nonlinear term leads to a varying damping ratio of the closed‐loop system and yields a small overshoot as the output approaches the target reference, whereas the linear component is designed to achieve a quick response of the closed‐loop system. Two composite nonlinear feedback control laws by both state feedback and measurement output feedback are addressed. An illustrative example is included to show the validity of the obtained results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
In this article, a unified mode‐dependent average dwell time (MDADT) stability result is investigated, which could be applied to switched systems with an arbitrary combination of stable and unstable subsystems. Combined with MDADT analysis method, we classified subsystems into two categories: switching stable subsystems and switching unstable subsystems. State divergence caused by switching unstable subsystems could be compensated by activating switching stable subsystems for a sufficiently long time. Based on the above considerations, a new globally exponentially stability condition was proposed for discrete‐time switched linear systems. Under the premise of not resolving the LMIs, the MDADT boundary of the new stability condition is allowed to be readjusted according to the actual switching signal. Furthermore, the new stability result is a generalization of the previous one, which is more suitable for the case of more unstable subsystems. Some simulation results are given to show the advantages of the theoretic results obtained.  相似文献   

10.
This paper is concerned with the design of an LMI‐based discrete‐time nonlinear state observer for an anaerobic digestion model. In presence of disturbances in both the dynamics of the model and the output measurement signals, the proposed observer robustly estimates all state variables including bacteria concentrations, which are costly and difficult to measure. In the goal to increase applicability of the proposed observer for other systems, we present the theoretical results in a general way. First, due to the use of Young's inequality in a convenient way, we get new sufficient conditions, expressed in terms of bilinear matrix inequalities (BMIs), ensuring the criterion. Then, to render the BMIs convex, two alternative solutions are proposed, where both lead to linear matrix inequality (LMI) conditions. It is shown analytically and numerically that these two solutions provide less conservative LMI conditions compared to the existing methods in the literature. To validate the proposed methodology on a real‐world model, an application to an anaerobic digestion model is given.  相似文献   

11.
This paper focuses on the observer design for nonlinear discrete‐time systems by means of nonlinear observer canonical form. At first, sufficient and necessary conditions are obtained for a class of autonomous nonlinear discrete‐time systems to be immersible into higher dimensional observer canonical form. Then a method called dynamic observer error linearization is developed. By introducing a dynamic auxiliary system, the augmented system is shown to be locally equivalent to the generalized observer form, whose nonlinear terms contain auxiliary states and output of the system. A constructive algorithm is also provided to obtain the state coordinate transformation. These results are an extension of their counterparts of nonlinear continuous‐time systems to nonlinear discrete‐time systems (Syst. Control Lett. 1986; 7 :133–142; SIAM. J. Control Optim. 2003; 41 :1756–1778; Int. J. Control 2004; 77 :723–734; Automatica 2006; 42 :321–328; IEEE Trans. Automat. Control 2007; 52 :83–88; IEEE Trans. Automat. Control 2004; 49 :1746–1750; Automatica 2006; 42 :2195–2200; IEEE Trans. Automat. Control 1996; 41 :598–603; Syst. Control Lett. 1997; 31 :115–128). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
This work addresses the finite‐time optimal control problem for a class of interconnected nonlinear systems with powers of positive odd rational numbers. A series of homogeneous controllers, which are capable of guaranteeing the local finite‐time stability of the closed‐loop systems, are first developed using the adding one power integrator method and backstepping technique. Then, the nested saturation controllers are further proposed to achieve global finite‐time stability. Furthermore, the corresponding design parameters are optimized, and thus, an optimal controller is obtained. A numerical simulation example is finally given to illustrate the effectiveness of the proposed control strategy.  相似文献   

13.
A new definition of homogeneity for discrete‐time systems is introduced. As in the continuous‐time case, the property can be verified algebraically in the transition map of the system, and it implies that a dilation of the initial conditions leads to a scaling of the trajectory. Stability properties and convergence rates of the system's solutions can be established by considering only the homogeneity degree. The existence of homogeneous Lyapunov and Lyapunov‐like functions is proven.  相似文献   

14.
In this paper, a nonlinear minimization approach is proposed for multiobjective and structured controls for discrete‐time systems. The problem of finding multiobjective and structured controls for discrete‐time systems is represented as a quadratic matrix inequality problem. It is shown that the problem is reduced to a nonlinear minimization problem that has a concave objective function and linear matrix inequality constraints. An algorithm for the nonlinear minimization problem is proposed, which is easily implemented with existing semidefinite programming algorithms. The validity of the proposed algorithm is illustrated by comparisons with existing methods. In addition, applications of this work are demonstrated via numerical examples. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
This paper proposes a linear matrix inequality based method for the estimation of domain of attraction for a class of discrete‐time nonlinear systems subject to uncertain constant parameters. Recursive algebraic representations of the system dynamics and of the Lyapunov stability conditions are applied to obtain convex conditions which guarantee the system robust local stability while providing an estimate of the domain of attraction. A large class of discrete‐time nonlinear systems and of Lyapunov functions can be embedded in the proposed methodology including the whole class of regular rational functions of the system state variable and uncertain parameters. Numerical examples illustrate the application of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Linear discrete‐time switched stochastic systems are considered, where the problems of mean square stability, stochastic l2‐gain and state‐feedback control design are treated and solved. Solutions are obtained for both nominal and polytopic‐type uncertain systems. In all these problems, the switching obeys a dwell time constraint. In our solution, to each subsystem of the switched system, a Lyapunov function is assigned that is nonincreasing at the switching instants. The latter function is allowed to vary piecewise linearly, starting at the end of the previous switch instant, and it becomes time invariant after the dwell. In order to guarantee asymptotic stability, we require the Lyapunov function to be negative between consecutive switchings. We thus obtain Linear Matrix Inequalities conditions. Based on the solution of the stochastic l2‐gain problem, we derive a solution to the state‐feedback control design, where we treat a variety of special cases. Being affine in the system matrices, all the aforementioned solutions are extended to the uncertain polytopic case. The proposed theory is demonstrated by a practical example taken from the field of flight control. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
This paper studies the problem of global stabilization of a family of discrete‐time feedforward time‐delay systems with bounded controls. Two classes of nonlinear control laws are established based on a special canonical form of the considered system. The proposed control laws use not only the current states but also the delayed states for feedback and, moreover, contain some free parameters. These advantages can help to improve the transient performance of the closed‐loop system significantly. A practical example is given for illustration.  相似文献   

18.
The output tracking (OT) of arbitrary references in discrete‐time (DT) nonlinear systems is addressed by designing an output‐feedback control. A set of difference‐algebraic equations is proposed as an exact solution of the problem. Using a novel technique of approximating DT functions, the system disturbance and steady states, characterized by tracking error identically zero, for both the system state and the control input, are represented as signals generated by a disturbed dynamic system. Using the mentioned dynamics, the control system is extended. Then, a state observer is proposed to estimate the resulting extended system state. Finally, a DT sliding mode controller is designed to achieve the approximate OT. Simulations show the effectiveness of the proposed control scheme.  相似文献   

19.
In this paper, we will establish a framework that can convert the robust output regulation problem for discrete‐time nonlinear systems into a robust stabilization problem for an appropriately augmented system consisting of the given plant and a specific dynamic system called internal model. We then apply this framework to solve the local robust output regulation problem for a general class of discrete‐time nonlinear systems. The results of this paper gives a discrete‐time counterpart of the recent results on the continuous‐time robust output regulation problem. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
This paper is concerned with the reachable set estimation problem for discrete‐time linear systems with multiple constant delays and bounded peak inputs. The objective is to check whether there exists a bounded set that contains all the system states under zero initial conditions. First, delay‐dependent conditions for the solvability of the addressed problem are derived by employing a novel Lyapunov–Krasovskii functional. The obtained conditions are expressed in terms of matrix inequalities, which are linear when only one scalar variable is fixed. On the basis of these conditions, an ellipsoid containing the reachable set of the considered system is obtained. An approach for determining the smallest ellipsoid is also provided. Second, the approach and results developed in the first stage are generalized to the case of systems with polytopic parameter uncertainties, and delay‐dependent conditions are given in the form of relaxed matrix inequalities. Finally, two numerical examples are provided to demonstrate the effectiveness of the proposed methods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号