首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
An approach is presented in this study to aid water‐resource managers in characterizing streamflow alteration at ungauged rivers. Such approaches can be used to take advantage of the substantial amounts of biological data collected at ungauged rivers to evaluate the potential ecological consequences of altered streamflows. National‐scale random forest statistical models are developed to predict the likelihood that ungauged rivers have altered streamflows (relative to expected natural condition) for five hydrologic metrics (HMs) representing different aspects of the streamflow regime. The models use human disturbance variables, such as number of dams and road density, to predict the likelihood of streamflow alteration. For each HM, separate models are derived to predict the likelihood that the observed metric is greater than (‘inflated’) or less than (‘diminished’) natural conditions. The utility of these models is demonstrated by applying them to all river segments in the South Platte River in Colorado, USA, and for all 10‐digit hydrologic units in the conterminous United States. In general, the models successfully predicted the likelihood of alteration to the five HMs at the national scale as well as in the South Platte River basin. However, the models predicting the likelihood of diminished HMs consistently outperformed models predicting inflated HMs, possibly because of fewer sites across the conterminous United States where HMs are inflated. The results of these analyses suggest that the primary predictors of altered streamflow regimes across the Nation are (i) the residence time of annual runoff held in storage in reservoirs, (ii) the degree of urbanization measured by road density and (iii) the extent of agricultural land cover in the river basin. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

2.
Chum salmon (Oncorhynchus keta) below Bonneville Dam migrate through as well as hold and spawn in both tributaries and mainstem areas of the Columbia River, USA. Whether fluctuations in tailwater elevation influence spawning in tributaries is unclear. We examined the relationship between Bonneville Dam tailwater elevation, seasonal precipitation and chum salmon spawning activities in three tributary spawning areas. In these tributaries, we assessed initial date of entry, time required to enter and length of spawning season, as well as the proportion of the total population that spawned in tributaries and the distribution of spawners among tributaries. Using linear regression, these variables were compared to cumulative hours of tailwater elevation ≥ 3.5 m and cumulative precipitation. Increased Bonneville Dam tailwater elevation was associated with later and longer lasting chum salmon spawning activities, but was not associated with the distribution of chum salmon spawners in tributaries. Increased seasonal precipitation was associated with a more prolonged spawning season and relatively even distribution of adult chum salmon, but was unrelated to the timing of chum salmon spawning in tributaries. The regulation of tailwater elevation downstream from Bonneville Dam can influence the spawning process for chum salmon in tributaries that enter the regulated area. How important this influence is to the decline of chum salmon in the Columbia River is unclear. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

3.
SHIP HYDRODYNAMICS BASIC RESEARCH IN THE UNITED STATES   总被引:3,自引:0,他引:3  
SHIPHYDRODYNAMICSBASICRESEARCHINTHEUNITEDSTATES¥EdwinP.Rood(MechanicsandEngergyConversion(333),OfficeofNavalResearchArlington...  相似文献   

4.
This study quantified the unique variation in stream fish and habitat and a land use disturbance index (LDI) at a variety of spatial scales: catchment, eight riparian polygons that varied in width and length (e.g. 50 m to all upstream reaches), upstream polygons of 1.6 and 3.2 km and the residual upland area of each site watershed not accounted for by each polygon. The analyses confirmed a hockey stick‐shaped relationship between the fish community and the LDI, with sensitive species only present below an LDI of 11. The largest variation for most metrics was explained by the largest polygons, suggesting that local riparian conditions were not as important predictors of stream condition. LDI in upland areas, where zero‐order streams occur, was also an important predictor of fish biomass and taxa richness. Contrary to expected, additive models with both catchment and riparian corridors provided minimal increases in predictive power, and no improvement in model performance occurred when data sets were stratified into sites below the LDI threshold. Finally, there was considerable covariation in the template and stressor predictor variables that made it difficult to quantify the unique variation in biological and physical responses accounted for by land use. That the 1600‐m proximal polygon provided the best predictor of the fish community and temperature is supportive of there being some proximal effects of land use. Overall, our findings suggest that stream management must consider processes that occur in the entire upstream catchment and the entire riparian corridor, including the headwaters for success. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Large woody debris (LWD) is an important ecological element in rivers and streams. Despite its importance, LWD is often removed from urban stream channels for flood control or road maintenance purposes, an approach with high economic and ecological costs and one that is largely unsuccessful. We propose an approach to conserve LWD in channels by modifying infrastructure (culverts and bridges) to allow LWD passage, maintaining aquatic habitat and reducing flooding and road maintenance costs. In Soquel Creek (California, USA), which has a history of LWD‐related flooding, we compared long‐term LWD management costs of historical, current and a LWD‐passing approach whereby infrastructure is enlarged to accommodate LWD passage downstream. We estimated costs of infrastructure replacement, programmatic flood control (LWD removal), LWD‐related flood damage and lost aquatic habitat. The amount of lost aquatic habitat was determined by comparing LWD loading (pieces m?1) in Soquel Creek (0.007 pieces m?1) to nearby unmanaged streams (0.054 to 0.106 pieces m?1). Estimated costs of infrastructure able to pass LWD were nearly double that of historical costs but comparable to current costs. The LWD‐passing approach was comparable to removal approaches in the short term (1 to 50 years) but much less in the long term (51 to 100 years), as expenditures in infrastructure replacement to accommodate LWD yielded reductions in flooding costs and habitat loss. Given the urgency to maintain and restore aquatic habitat, the proposed approach may be broadly applicable. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Rheophilic fishes are one of the ecological groups of fishes declining most quickly in number due to various habitat modifications and discharge regulations. Artificial rapid increases and decreases in discharge (hydropeaking) can cause severe damage to the eggs of rheophilic fishes. We investigated whether the effects of a water increase in hydropeaking on a spawning ground may be mitigated by a deflector installed at the top of the weir that diverts flow to other sections. At the research site, rheophilic asp (Leuciscus aspius) spawn annually in early spring, and their success might be affected by hydropeaking, with base discharge ranging from 3 to 7 m3 × s−1 and peak discharge ranging from 16 to 25 m3 × s−1 occurring 4 to 7 times during the asp spawning season and egg development period. To protect the adhesive eggs from detachment during peak discharge, a flow deflector (a wooden wall at the selected part of the weir) was installed to regulate discharge on the protected spawning ground. This measure allowed normal discharge under base flow conditions. During peak flow, a significant portion of the additional water was directed to the part of the river channel where egg abundance was lower and to the mill channel, where asp spawning was not present. While the total discharge increased 4.1 times compared to the base flow, the water discharge in the protected spawning ground increased only 2.7 times. This resulted in more than half of the asp eggs being retained in the protected channel. Although the use of such a measure is limited to specific local conditions where eggs are located just downstream of the weir, it can be a valid solution in highly fragmented rivers with hydropeaking and can lead to higher recruitment of rheophilic fishes.  相似文献   

7.
简单介绍考察加拿大大坝安全管理及监测情况以及考察体会,对我省大坝安全管理及监测工作提出建议。  相似文献   

8.
Our goal was to build a geographic information system (GIS) tool to enhance modeling and hypothesis testing relevant to watersheds and fish fauna of the Red and Sabine Rivers in the southeastern United States. Species of concern were identified from wildlife action plans and Web sites. Spatial distributions of fish species and mercury in fillets were delineated using data from states. Public georeferenced data were obtained on land cover, soil type, forest canopy, impervious surfaces, wastewater facilities and 303(d) impaired waters. Overlay maps highlighted patterns across 8‐digit hydrologic unit codes (HUCs). Bossier City, Louisiana and Beaumont, Texas areas displayed impervious surfaces over 10% and 303(d) waters per HUC were 20% and 8%, respectively. Because bowfin (Amia calva) (n = 299) and bass (Micropterus spp.) (n = 1493) occurred in up to 44% of HUCs and fillets contained elemental mercury concentrations across ranges monitored, they were appropriate indicators of bioavailable mercury. Of the total fish number showing >0.5 ppm, 81% of records were derived from bowfin and bass, and stepwise multiple linear regressions indicated fish with mercury at these concentrations correlated with environmental variables. Detrended correspondence analysis showed total species occurrence and environmental relationships significant, where 81.6% of the variability in fish occurrence was explained by impervious surface, land cover other than canopy or impervious surface (such as wetlands and agricultural area) and canopy (forest type). Two‐way indicator species analysis delineated species co‐occurrence in HUCs (14 groups) and similarity of species composition (nine groups). Results identified three HUC groupings as potential targets for managerial interest. Quality control concerns for GIS development included site name data and priority rankings of critical fish species. This tool can be used to support modeling and trend analyses for several purposes, such as those relevant for developing and reporting on water quality standards and critical habitat assessments. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

9.
The conservation of stream biodiversity requires more explicit knowledge on the distribution of aquatic species within the context of their specific environmental settings and stresses. Although species distribution models (SDMs) have been widely used for organisms occupying contiguous spatial extents, the implementation of SDMs in relatively complex and segmented riverine networks is still at its early stage. In this study, we explicitly modelled the headwater stream habitat for the threatened blackside dace (Phoxinus cumberlandensis) endemic to the upper Cumberland River, Kentucky, USA. An occurrence record data set, along with variables describing stream properties and land use impacts, was used to predict the fish habitat suitability at the stream segment level. An approach combining geographic information systems and the maximum entropy species distribution modelling (MaxEnt) was adopted. Results demonstrated that natural conditions and land use disturbances, respectively, form the primary and secondary environmental constraints on the species' habitat. We generated regional‐scale management‐friendly maps showing subwatershed habitat suitability and locations of the clustered suitable habitats (hotspots) and thus set an example for spatially explicit management of threatened and endangered riverine species. This study demonstrates the usefulness of SDMs for stream network–based environments in the facilitation of biogeographic conservation efforts and studies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Hungry Horse Dam on the South Fork Flathead River, Montana, USA, has modified the natural flow regimen for power generation, flood risk management and flow augmentation for anadromous fish recovery in the Columbia River. Concern over the detrimental effects of dam operations on native resident fishes prompted research to quantify the impacts of alternative flow management strategies on threatened bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarkii lewisi) habitats. Seasonal and life‐stage specific habitat suitability criteria were combined with a two‐dimensional hydrodynamic habitat model to assess discharge effects on usable habitats. Telemetry data used to construct seasonal habitat suitability curves revealed that subadult (fish that emigrated from natal streams to the river system) bull trout move to shallow, low‐velocity shoreline areas at night, which are most sensitive to flow fluctuations. Habitat time series analyses comparing the natural flow regimen (predam, 1929–1952) with five postdam flow management strategies (1953–2008) show that the natural flow conditions optimize the critical bull trout habitats and that the current strategy best resembles the natural flow conditions of all postdam periods. Late summer flow augmentation for anadromous fish recovery, however, produces higher discharges than predam conditions, which reduces the availability of usable habitat during this critical growing season. Our results suggest that past flow management policies that created sporadic streamflow fluctuations were likely detrimental to resident salmonids and that natural flow management strategies will likely improve the chances of protecting key ecosystem processes and help to maintain and restore threatened bull trout and westslope cutthroat trout populations in the upper Columbia River Basin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Twenty‐one stream reaches in northwestern Vermont were surveyed to assess the relative influence of local‐ and watershed‐scale variables on stream biotic assemblages including fish, aquatic macroinvertebrates and birds. Data were collected during the summers of 2003 and 2004 and included quantitative and qualitative geomorphic and habitat assessments (local‐scale) and land‐use characterization and modelled annual flow and sediment loading (watershed‐scale). Biotic assemblages were surveyed to capture characteristics related to abundance, diversity and composition. Principal components analysis (PCA) was used to generate sets of factors representing unique scenarios of geophysical data derived from various spatial extents within the watershed. These factors were then used as the independent variables in multiple regression models using the biotic data as the dependent variables. Forty significant models were built from the combination of the eight scenarios and 11 dependent variables. Fish assemblage diversity and composition were influenced by a combination of local‐scale and watershed‐scale variables; however, the qualitative local data were more predictive than the quantitative data. Local‐scale data and sediment (model‐derived) were important factors in building significant macroinvertebrate models. Bird abundance and species richness were best predicted using local geomorphic characteristics and the qualitative local data. Our results reinforce the concept that whereas both local‐ and watershed‐scale variables affect stream biota, their relative influence depends upon the individual ecology of each taxon. In order to address these issues, comprehensive watershed management, restoration and conservation plans would benefit from assessments at multiple scales and from geomorphological, watershed and multitaxonomic perspectives. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
This paper summarizes experiments conducted at the Outdoor Stream Lab to gain insight on the relationships between a channel's spectral characteristics and the river attributes of interest to scientists and managers. Improved understanding of these connections would advance the application of remote sensing to fluvial systems. Motivated by this objective, we examined the following: (i) interactions among local hydraulics, water surface roughness and surface reflectance; and (ii) the influence of periphyton development and streambed disturbance on bottom reflectance. These experiments could thus lead to novel methods for inferring flow velocity and substrate type, respectively, from passive optical image data. Our initial results indicate the following: (i) water surface reflectance can compromise spectrally based depth retrieval by reducing the range of useful wavelengths and weakening correlations between band ratios and depth, implying that removing the surface‐reflected component of the total radiance could facilitate bathymetric mapping; (ii) water surface roughness was influenced by local hydraulics and was positively correlated with water surface reflectance, suggesting that observations of surface reflectance could be used to infer flow velocities; (iii) substrate spectral characteristics were influenced by the degree of periphyton development, implying that algal biomass might be estimated from remotely sensed data; and (iv) similarly, bottom reflectance differed significantly for intact versus disturbed substrates, suggesting that areas of streambed disturbance might be identified via remote sensing. Future work will focus on further elucidating connections between surface reflectance, water surface texture and flow velocity, and developing quantitative relationships between bottom reflectance, periphyton abundance and the degree of streambed disturbance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
European river basin authorities are responsible for the implementation of the new river basin management plans in accordance with the European Water Framework Directive. This paper presents a new methodology framework and approach to define and evaluate environmental flow regimes in the realistic complexities that exist with multiple water resource needs at a basin scale. This approach links river basin simulation models and habitat time series analysis to generate ranges of environmental flows (e‐flows), which are evaluated by using habitat, hydropower production and reliability of water supply criteria to produce best possible alternatives. With the use of these tools, the effects of the proposed e‐flows have been assessed to help in the consultation process. The possible effects analysed are impacts on water supply reliability, hydropower production and aquatic habitat. After public agreements, a heuristic optimization process was applied to maximize e‐flows and habitat indicators, while maintaining a legal level of reliability for water resource demands. The final optimal e‐flows were considered for the river basin management plans of the Duero river basin. This paper demonstrates the importance of considering quantitative hydrologic and ecological aspects of e‐flows at the basin scale in addressing complex water resource systems. This approach merges standard methods such as physical habitat simulations and time series analyses for evaluating alternatives, with recent methods to simulate and optimize water management alternatives in river networks. It can be integrated with or used to complement other frameworks for e‐flow assessments such as the In‐stream Flow Incremental Methodology and Ecological Limits of Hydrologic Alteration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Emergent sandbars on the Missouri River are actively managed for two listed bird species, piping plovers and interior least terns. As a plunge‐diving piscivore, endangered least terns rely on ready access to appropriately sized slender‐bodied fish: <52 mm total length for adults and <34 mm total length for young chicks. As part of a multi‐agency recovery programme, aimed at enhancing nesting habitat for plovers and terns, the U.S. Army Corps of Engineers mechanically created several emergent sandbars on the Missouri River. However, it was unknown whether sandbar construction is a benefit or a detriment to forage abundance for least terns. Therefore, we studied the shallow‐water (<1.5 m) fish community near river and mechanically created emergent sandbars during three nesting seasons (2006–2008). We sampled every 2 weeks each year from late May to July within 15–16 areas to document the relative abundance, species richness and size classes of fish. Fish relative abundance was negatively related to depth. Catches were dominated by schooling species, including emerald shiner, sand shiner, spotfin shiner and bigmouth buffalo. Significant inter‐annual differences in relative abundance were observed, with generally increasing trends in intra‐seasonal relative abundance of shiners and the smallest size classes of fish (<34 mm). Significant differences in the fish communities between the sandbar types were not detected in this study. Results suggest that mechanical sandbar habitats host comparable fish communities at similar levels of relative abundance. Further analyses are required to evaluate if the levels of fish relative abundance are adequate to support least tern foraging and reproduction. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

15.
Both water managers and researchers have the same goal when it comes to fish conservation, namely, to sustain, to improve or to restore aquatic habitat. To this aim, two‐dimensional (2D) hydrodynamic models have been widely used in aquatic habitat studies because they simulate flow with high accuracy and can predict habitat dynamics. The River2D model is able to integrate the habitat suitability curves for fish life stages with the simulated depth and velocity fields and the riverbed characteristics of substrate and cover, thereby estimating the corresponding weighted usable area, and thus predicting the potential distribution of fish species in the river. However, little is known about the in situ variability associated with such predictions both for hydraulic and biological data, whereas ecological responses are known to be driven by variability. Moreover, when calculating habitat availability, differences can be found by considering in the weighted usable area formulation substrate or cover or even both. To test the level of predictive accuracy of hydraulic and biological simulations, we modelled the habitat use by two fish species, the Iberian barbel Luciobarbus bocagei and the Iberian straight‐mouth nase Pseudochondrostoma polylepis, according to their requirements for depth, velocity, substrate and cover and then compared measured and simulated hydraulic and biological outcomes using the River2D model. Results indicate that 2D simulation depends on data collection, especially the density and location of bed topography points. Substantial differences were found in the biological responses. Results may differ when choosing different habitat availability variables. Similarly, habitat use may also be influenced by other biotic and abiotic interactions occurring in ecosystems, and restoration planning should be aware of such variability. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号