首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
All-organic PDLC (polymer-dispersed liquid crystal) light-valves using all-polymer conductive substrates containing thin films of polypyrrole doped with anthraquinone-2-sulfonate (AQSA) as the driving electrodes were fabricated in this study. The all-polymer conductive substrates were prepared under ambient conditions by in situ depositing polypyrrole thin films on blank flexible poly(ethylene terephthalate), or PET, substrates from aqueous media in which oxidative polymerization of pyrrole was taking place. The obtained flexible all-polymer conductive substrates were semi-transparent with cohesive coatings of AQSA-doped polypyrrole thin films (thickness ∼55 nm). The all-polymer flexible conductive substrates had sheet resistivity ∼40 kΩ □ −1and T% transparency against air ∼78% at 600 nm. The light-valves fabricated using the above all-polymer conductive substrates showed ∼50% transparency against air at 600 nm when 4 V μm−1 electric field was applied.  相似文献   

2.
溶致液晶偏振薄膜的研究   总被引:1,自引:0,他引:1  
对N, N'-二氢化蒽醌吖嗪(还原蓝RSN)和N, N'-二苯并咪唑-1,4:5,8-萘酰亚胺(还原猩红GG)改性处理引入磺酸基,使其成为双亲性化合物,红外光谱结果表明磺酸基改变了分子的极性.双亲性染料分子在极性溶剂中溶解、浓缩、自组装成有序聚集体,在正交偏振光下,织构呈带状和棒状.将溶液用线棒涂布器在玻璃衬底上展开,同时剪切诱导分子取向分布,溶剂自然蒸发后形成0.5~0.7μm厚固态偏振薄膜.溶致液晶的粘度显著影响涂布薄膜的表面平整度和取向度,在可见光部分波段,薄膜具有良好的光学偏振效率,最佳偏振效率达到95%以上,实用前景看好.  相似文献   

3.
W.J. Zheng  M.H. Huang 《Thin solid films》2012,520(7):2841-2845
The possibility of the use of polydimethylsiloxane to align liquid crystals is studied. The polydimethylsiloxane thin films coated on glass substrates exhibit a very low surface free energy, and are found to be capable of vertical liquid crystal alignment. Comparing to thin films made using a typical polyimide polydimethylsiloxane films possess a more stable surface energetic state. The pretilt angle of the calamitic liquid crystal molecules sandwiched between the silicon elastomer thin films was virtually 90°, and the molecular tilt can be maintained in a wide temperature range. Liquid crystal sandwiched between the silicon-based polymer thin films can operate in the in-plane-switching mode.  相似文献   

4.
5.
A multilayer thin film device called a beam combiner for a specific photodissociation experiment was designed and developed. The device when operated at 45° angle of incidence transmits auv laser beam and reflects a visible laser beam at the same time with minimum energy loss. The efficiency of the device was found to be better than 90%.  相似文献   

6.
Thin (1 μm) a-Si:H films have been deposited on glass at high-deposition rate (8 nm/s) and high substrate temperature (400 °C) by the expanding thermal plasma technique (ETP). After a Solid Phase Crystallization treatment at 650 °C for 10 h, many crystal grains are found to extend over the entire thickness (1 μm) of the polycrystalline silicon (poly-Si) films. This result indicates that the scalable, high-deposition rate ETP method can contribute to increase the potential for a widespread diffusion of poly-Si based thin film solar cells on glass.  相似文献   

7.
Three organo-soluble polyimide powders have been synthesized. Their imidization was verified by Fourier transform infrared (FTIR) and thermal gravimetric analysis (TGA) techniques. The amorphous morphology of their thin films were confirmed by X-ray diffraction. Polyimide thin films were prepared by solution casting or spin coating. UV–visible transmission spectra of thin films revealed that they are almost transparent in the range of visible light. With in-plane orientation, revealed by FTIR spectra, negative birefringence (Δn) of thin films were observed, and refractive indices of the thin films along the film plane (nTE) and normal to the plane (nTM) were measured by a prism coupler. Because of negative birefringence of the thin films, they can be substituted for the compensation films for twisted nematic liquid crystal displays (TN-LCDs) to extend their viewing angles. In this paper, a 90°C TN-LCD and 120°C TN-LCD were taken as examples to show the compensation effect of thin films of a qualified polyimide.  相似文献   

8.
Fourier transform infrared absorption spectroscopy (FTIR), optical emission spectroscopy (OES), self-bias voltage and plasma impedance controls were applied as in situ process diagnostics during the deposition of amorphous silicon thin-films. The diagnostic abilities of OES and FTIR are compared. The FTIR in-situ direct measurement of silane concentration in exhaust line is more precise than OES control. All in situ process diagnostics clearly indicates the inconsistency of plasma properties and therefore of deposition conditions. The drifts are comparable with the film deposition time. The FTIR measurement of reactant concentration in the process chamber evidence that the strong silane concentration drop (about 50%) in a plasma is the cause of the short-term drift of OES signals (SiH? emission), plasma impedance and self-bias voltage signals. The influences of the deposition chamber geometry and technological parameters on process drifts are considered. The decrease of the gas residence time in the reactor leads to a decrease of Initial Transient State phenomena. Finally, the improvement of solar cell performance based on thin silicon films is demonstrated when drifts are reduced.  相似文献   

9.
The oxidation of clean crystalline silicon surfaces is self-limiting at moderate oxygen pressures (10− 5 Pa) and temperatures (500 °C), forming 0.7-0.8 nm thick oxide layers. This study looks at the oxidation of a surface of a thin amorphous silicon film to establish if a similar mechanism is active in this case. We have devised a special experimental procedure to check the oxidation mechanism of thin amorphous silicon films. For the spectroscopic investigations we used photoemission with synchrotron radiation with the highest possible surface sensitivity and resolution. This permits a detailed decomposition of the Si 2p spectral details, using a mathematical decomposition procedure. The results clearly show that the oxidation mechanism of the surface of an amorphous silicon film under similar conditions is severely hindered compared to cases of crystalline substrates, indicating less reactivity at the surface and less transport of oxygen into the amorphous material.  相似文献   

10.
N-type hydrogenated nanocrystalline silicon thin film piezoresistors, with gauge factor − 28, were deposited on rugged and flexible polyimide foils by Hot-wire chemical vapor deposition using a tantalum filament heated to 1750 °C. The piezoresistive response under cyclic quasi-static and dynamical (up to 100 Hz) load conditions is reported. Test structures, consisting of microresistors having lateral dimensions in the range from 50 to 100 μm and thickness of 120 nm were defined in an array by reactive ion etching. Metallic pads, forming ohmic contacts to the sensing elements, were defined by a lift-off process. A readout circuit for the array consisting in a mutiplexer on each row and column of the matrix is proposed. The digital data will be processed, interpreted and stored internally by an ultra low-power micro controller, also responsible for the communication of two-way wireless data, e.g. from inside to outside the human body.  相似文献   

11.
This paper investigates the nematic liquid crystal (NLC) alignment on ion beam-exposed zinc oxide (ZnO) films. The ZnO films are deposited by a radio frequency magnetron sputtering. During the deposition of ZnO film, we supplied sufficient oxygen gas for high resistivity and transmittance. The deposited films show a high transmittance of over 90% and high resistivity of over 1010 Ω cm. The ZnO films show a high deposition rate of 26.7 Å/min. Images obtained via scanning electron microscopy of the ZnO film surfaces, before and after the ion beam exposure, show that groove patterns are formed being to be parallel to the ion beam exposure direction. LC cells are fabricated with the ion beam-exposed ZnO films. The NLC molecules align parallel to the ion beam exposure direction. The electro-optic and response characteristics of fabricated cells show the possibility of application to liquid crystal displays.  相似文献   

12.
In this paper, polyimide surfaces irradiated by an ion-beam for liquid crystal alignment are investigated by using atomic force microscopy, Raman spectroscopy, and spectroscopic ellipsometry. A liquid crystal cell aligned homogeneously through the ion-beam exposure exhibits electro-optic switching behavior similar to that of a rubbing-aligned liquid crystal cell. However, we found that the surface morphology and bonding molecules of ion-beam-treated polyimide surfaces show properties very different from mechanically-rubbed ones. Experimental results show that optical anisotropy of ion-beam-treated polyimide surfaces results in the formation of hydrogenated amorphous carbon-like structure with a short main-chain, while mechanical rubbing has little effect on structural and compositional variations of polyimide layers.  相似文献   

13.
Magnetic and structural properties of Fe-Zr-Nb-B-Cu thin films, prepared by ion beam sputtering on silicon substrates by using a target made up of amorphous ribbons of nominal composition Fe84Zr3.5Nb3.5B8Cu1, are reported. As-deposited thin film samples exhibit an in-plane uniaxial anisotropy, which can be ascribed to the preparation technique and the coupling of quenched-in internal stresses. Structural measurements indicate no significant variation of the grain size with thickness and with the annealing temperature. Increase in surface irregularities with annealing temperature and oxidation results in aggregates that would act as pinning centers, affecting the magnetic properties leading to magnetic hardening of the specimens. The role of the magnetic anisotropy is thoroughly discussed with the help of magnetic and ferromagnetic resonance measurements.  相似文献   

14.
Stiff thin layers on compliant substrates can generate various surface structures using equi-biaxial stress caused by large thermal expansion rate differences. We investigated the detailed understanding on the evolution of self-assembled wrinkle patterns of ultra-thin amorphous silicon (a-Si) layers on polydimethylsiloxane substrate. It turns out that the generation of various wrinkle patterns depends on the position of their orientation, film thicknesses, mechanical properties of the a-Si films, and the amount of pre-strain. The various self-assembled patterns include one-dimensional wavy patterns, randomly ordered two-dimensional structured patterns, and herringbone structures. The self-assembled wrinkles can be characterized by the wavelength and amplitude of the distinct structures: the amplitudes of the various patterns increase as the amount of pre-strain increases, while the wavelengths remain constant within our experimental ranges. The experimental results of the wavelengths and amplitudes for the wavy structured patterns of 270-nm-thick a-Si layer are in good agreement with the theoretical solutions of the single crystalline silicon (c-Si) model, which implies that the theoretical modeling of the deformation of c-Si film can be expandable to the case of a-Si film deformations.  相似文献   

15.
Direct fabrication of ceria film and patterns were conducted by an ink-jet deposition method where a precursor solution was jetted towards a heated substrate (≤ 300 °C) according to the required pattern without any post heat treatments. X-ray diffraction and Raman spectroscopic analyses revealed that the formed phases were crystallized CeO2 without any impurity phases and consisted of nanosized crystallites of < 10 nm. The thicknesses were several hundred nanometers and the width of the patterns was about 350 µm. The film was dense and showed a high optical transparency in the visible region(> 90%). Scanning electron microscopic analysis revealed that thin film patterns were free of cracks and all the films showed good adherence to the substrate.  相似文献   

16.
Rod-like crystals BiSI films were synthesized by asynchronous ultrasonic spray pyrolysis method on glass substrates at 320 °C. The results show that an appropriate ratio of pulse time to interval time between pulses plays an important role in crystal growth direction of the rods, and a possible growth mechanism was proposed.  相似文献   

17.
A zirconium oxynitride (ZON) thin film was deposited onto HT9 steel as a cladding material by a metalorganic chemical vapor deposition (MOCVD) in order to prevent a fuel-clad chemical interaction (FCCI) between a U-10 wt% Zr metal fuel and a clad material. X-ray diffraction spectrums indicated that the mixture of structures of zirconium nitride, oxide and carbide in the MOCVD grown ZON thin films. Also, typical equiaxial grain structures were found in plane and cross sectional images of the as-deposited ZON thin films with a thickness range of 250-500 nm. A depth profile using auger electron microscopy revealed that carbon and oxygen atoms were decreased in the ZON thin film deposited with hydrogen gas flow. Diffusion couple tests at 800 °C for 25 hours showed that the as-deposited ZON thin films had low carbon and oxygen content, confirmed by the Energy Dispersive X-ray Spectroscopy, which showed a barrier behavior for FCCI between the metal fuel and the clad. This result suggested that ZON thin film cladding by MOCVD, even with the thickness below the micro-meter level, has a high possibility as an effective FCCI barrier.  相似文献   

18.
In order to investigate the silane utilization during silicon thin film deposition, one quadrupole mass spectrometer was used to monitor the partial pressure of silane during high pressure and high power deposition process. Relationship of silane consumption with silane concentration, excitation power and reaction pressure was investigated. The results show that increasing silane concentration leads to lower silane consumption. Increasing excitation power can improve the silane utilization, which is proved by higher deposition rate. However, when the power is higher than a certain value, much more power will consume by the transmission line and matching network. The power coupled into the plasma saturates to a certain value and then no more silane decomposes any more. In addition, the silane consumption decreased and then increased with increasing reaction pressure, which is related with the voltage of electrodes. These results could help to improve silane utilization for low cost production and better quality of film.  相似文献   

19.
用双离子束溅射法制备了SiOxNy薄膜,并对薄膜的结构和光致发光(PL)性质进行了研究.XRD和TEM的实验结果表明薄膜是非晶结构;用XPS对样品进行了表征,在397.8eV位置处出现一个对应于N1s的对称峰,表明样品中的N原子主要与Si原子结合,FTIR的实验结果也说明了这一点.光吸收测量结果显示SiOxNy薄膜的光学带隙比Si-SiO2薄膜宽.在225nm波长的激发下,测得在590nm处有强的黄光发射,并利用能带模型讨论了可能的发光机制.  相似文献   

20.
N-type bismuth telluride (Bi2Te3) thermoelectric thin films were deposited on BK7 glass substrates by ion beam sputtering method. Various substrate temperatures were tried to obtain optimal thermoelectric performance. The influence of deposition temperature on microstructure, surface morphology and thermoelectric properties was investigated. X-ray diffraction shows that the films are rhombohedral with c-axis as the preferred crystal orientation when the deposition temperature is above 250 °C. All the films with single Bi2Te3 phase are obtained by comparing X-ray diffraction and Raman spectroscopy. Scanning electron microscopy result reveals that the average grain size of the film is larger than 500 nm when the deposition temperature is above 300 °C. Thermoelectric properties including Seebeck coefficient and electrical conductivities were measured at room temperature, respectively. It is found that Seebeck coefficients increase from − 28 μV k− 1 to − 146 μV k− 1 and the electrical conductivities increase from 1.87 × 103 S cm− 1 to 3.94 × 103 S cm− 1 when the deposition temperature rose to 250 °C and 300 °C, respectively. An optimal power factor of 6.45 × 10− 3 Wm− 1 K− 2 is gained when the deposition temperature is 300 °C. The thermoelectric properties of bismuth telluride thin films have been found to be strongly enhanced by increasing the deposition temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号