首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
SiOx is proposed as one of the most promising anodes for Li‐ion batteries (LIBs) for its advantageous capacity and stable Li uptake/release electrochemistry, yet its practical application is still a big challenge. Here encapsulation of SiOx nanoparticles into conductive graphene bubble film via a facile and scalable self‐assembly in solution is shown. The SiOx nanoparticles are closely wrapped in multilayered graphene to reconstruct a flake‐graphite‐like macrostructure, which promises uniform and agglomeration‐free distribution of SiOx in the carbon while ensures a high mechanical strength and a high tap density of the composite. The composites present unprecedented cycling stability and excellent rate capabilities upon Li storage, rendering an opportunity for its anode use in the next‐generation high‐energy LIBs.  相似文献   

2.
SiOx is a promising next-generation anode material for lithium-ion batteries. However, its commercial adoption faces challenges such as low electrical conductivity, large volume expansion during cycling, and low initial Coulombic efficiency. Herein, to overcome these limitations, an eco-friendly in situ methodology for synthesizing carbon-containing mesoporous SiOx nanoparticles wrapped in another carbon layers is developed. The chemical reactions of vinyl-terminated silanes are designed to be confined inside the cationic surfactant-derived emulsion droplets. The polyvinylpyrrolidone-based chemical functionalization of organically modified SiO2 nanoparticles leads to excellent dispersion stability and allows for intact hybridization with graphene oxide sheets. The formation of a chemically reinforced heterointerface enables the spontaneous generation of mesopores inside the thermally reduced SiOx nanoparticles. The resulting mesoporous SiOx-based nanocomposite anodes exhibit superior cycling stability (≈100% after 500 cycles at 0.5 A g−1) and rate capability (554 mAh g−1 at 2 A g−1), elucidating characteristic synergetic effects in mesoporous SiOx-based nanocomposite anodes. The practical commercialization potential with a significant enhancement in initial Coulombic efficiency through a chemical prelithiation reaction is also presented. The full cell employing the prelithiated anode demonstrated more than 2 times higher Coulombic efficiency and discharge capacity compared to the full cell with a pristine anode.  相似文献   

3.
Calcium silicate (CaSiO3) bioceramics and polyesters have complementary qualities as potential bone substituted materials. In this study, sintered CaSiO3 bioceramics were prepared and coated with poly(lactic-co-glycolic acid) (PLGA), and the influences of the PLGA coating on the degradation, hydrophilicity, bioactivity, and biocompatibility of CaSiO3 ceramics were investigated. The results showed that the degradation rate was reduced, while hydrophilicity was decreased with the increase of the polymer coating. In addition, the polymer coating resulted in a decrease of the alkaline pH value during the degradation of the ceramics, which indicated an increase of the cell biocompatibility, confirmed by the attachment and proliferation of rMSCs on the surface of the polymer-coated ceramics. Furthermore, the apatite-forming ability of the PLGA-coated CaSiO3 bioceramics was maintained. This study suggested that the coating with PLGA might be a useful method to improve the integrative properties of CaSiO3 bioceramics for applications in bone regeneration and bone tissue engineering.  相似文献   

4.
Carbon film is an excellent candidate for use as a biocompatible coating due to its excellent properties. However, considerable attention has just been focused on the biocompatibility of diamond-like carbon (DLC) in recent years. It is difficult to find reports on the investigations of the biocompatibility of CNx so far. It is well known that CNx has similar structural characteristics as that of DLC. Its excellent mechanical and tribological properties are comparable to that of DLC. In addition, it is probable that the presence of nitrogen leads to a positive effect on biocompatibility. So, this work focusses on cell attachment of CNx coating and the relation between nitrogen atomic percentage and cell attachment. CNx coatings were prepared using magnetron sputtering under two N2 partial pressures for the evaluation of relation between nitrogen atomic percentage and cell attachment. Cell culture tests using human endothelial cells and mouse fibroblasts were performed. Both coatings resulted in no adverse effects on the cells in culture. Compared with CNx (x = 0.088), CNx (x = 0.149) film provided a better surface for normal cellular attachment, spreading and proliferation without apparent impairment of cell physiology. At the same time, the coatings exhibited excellent tribological and corrosion performance. XPS and AES analyses showed that higher nitrogen atomic percentage might lead to a positive effect on the cell attachment.  相似文献   

5.
The biocompatibility of titania/hydroxyapatite (TiO2HA) composite coatings, at different ratio obtained by sol–gel process, was investigated studying the behavior of primary cultures of rat osteoblastic cells, isolated by femoral trabecular bone tissue. Moreover, the results have been compared with the response of human osteoblast-like MG63 cell line. Cytotoxicity of coatings was assessed by lactate dehydrogenase activity (LDH). The cellular behavior was analyzed by the cell proliferation (MTT test), cell morphology (SEM) and the biochemical markers evaluation of osteoblastic phenotype, such as alkaline phosphatase activity (ALP) and osteocalcin production. The results showed that TiO2/HA coatings have no toxic effects and seemed to be a good support for cell adhesion and proliferation. Moreover, these materials allowed the differentiation of osteoblasts, stimulating the expression of alkaline phosphatase activity. The responses of the primary rat osteoblasts and human osteoblast-like MG63 cell line grown onto these coatings were similar in terms of proliferation and ALP activity. Differences were found considering the osteocalcin production. The results show that these coatings, thanks to their chemical composition and the deposition technique, are very promising for the potential orthopedic and dental applications.  相似文献   

6.
Although the SiOx nanoparticles were previously reported to electrochemically nucleate from the bottoms of the pore array formed in the AAO/Ti/Si system, new applications of anodic aluminum oxide templates, i.e., successive nucleation and a rodlike growth of SiOx nanoparticles, were observed utilizing the subsequent annealing technique after the nanoparticle precipitation. Tailoring the pore bottom profile by doping type and level of wafers also critically affected to nucleate the SiOx nanoparticles from the pore bottoms. By anodization, as previously reported, only one nanoparticle per each pore was generally precipitated from the pyramid-shaped Si-containing TiOx nanopillars; however, subsequent annealing under a low pressure of hydrogen enabled the successive precipitation of nanoparticles. Annealing under atmospheric pressure with H2 and N2 resulted in the rodlike growth of a single nanoparticle without successive nanoparticle precipitation.  相似文献   

7.
Copper silica composite coatings are an attractive alternative to chromium and nickel coatings in order to avoid environmental problems and for application in electrical devices. However, co-deposition of SiO2 particles with metals occurs to a rather limited extent, generally under 1%, due to the hydrophilicity of SiO2, which makes the incorporation of particles in a metallic matrix difficult. To overcome this drawback, the influence of cetyl trimethyl ammonium bromide (CTAB) on the deposition and corrosion behavior of Cu–SiO2 coatings on steel has been studied. It was established that CTAB plays a beneficial role in SiO2 suspension stabilization, promotes the co-deposition of nanoparticles in the copper matrix and improves the deposit morphology and structure. Consequently, a higher corrosion resistance of Cu–SiO2 deposits obtained in the presence of CTAB was noticed. The most important effect was observed in the case when CTAB was used in concentration of 10−3 M in the electroplating bath.  相似文献   

8.
Silicon oxide (SiOx) coatings have been exploited for packaging applications due to their exceptional properties. They can be fabricated by a number of techniques, including Electron Beam Evaporation (EBE); an easily applicable method in industrial scale. The SiOx films' thickness and stoichiometry are the key parameters for the achievement of the final functional properties of the systems. The need to reduce material waste as well as the time required for the evaluation of the systems, make real-time monitoring and control requisite. This work highlights a methodology based on real-time Multi-Wavelength Ellipsometry for the monitoring of the EBE processes of SiOx coatings on poly(ethylene terephthalate) membranes. It is presented a thorough correlation between the basic optical parameters, such as refractive index and Penn gap, and the SiOx films' thickness, stoichiometry, composition and functional properties, such as oxygen permeation.  相似文献   

9.
In order to improve the bioactivity and biocompatibility of titanium endosseous implants, the morphology and composition of the surfaces were modified. Polished Ti–6Al–4V substrates were coated by a laser cladding process with different precursors: 100 wt.% HA and 25 wt.% SiO2-HA. X-ray diffraction of the laser processed samples showed the presence of CaTiO3, Ca3(PO4)2, and Ca2SiO4 phases within the coatings. From in vitro studies, it was observed that compared to the unmodified substrate all laser cladded samples presented improved cellular interactions and bioactivity. The samples processed with 25 wt.% SiO2-HA precursor showed a significantly higher HA precipitation after immersion in simulated body fluid than 100 wt.% HA precursor and titanium substrates. The in vitro biocompatibility of the laser cladded coatings and titanium substrate was investigated by culturing of mouse MC3T3-E1 pre-osteoblast cell line and analyzing the cell viability, cell proliferation, and cell morphology. A significantly higher cell attachment and proliferation rate were observed for both laser cladded 100 wt.% HA and 25 wt.% SiO2-HA samples. Compared to 100 wt.% HA sample, 25 wt.% SiO2-HA samples presented a slightly improved cellular interaction due to the addition of SiO2. The staining of the actin filaments showed that the laser cladded samples induced a normal cytoskeleton and well-developed focal adhesion contacts. Scanning electron microscopic image of the cell cultured samples revealed better cell attachment and spreading for 25 wt.% SiO2-HA and 100 wt.% HA coatings than titanium substrate. These results suggest that the laser cladding process improves the bioactivity and biocompatibility of titanium. The observed biological improvements are mainly due to the coating induced changes in surface chemistry and surface morphology.  相似文献   

10.
Nanocomposite SiOx particles have been produced by a single step plasma spray physical vapor deposition (PS-PVD) through rapid condensation of SiO vapors and the subsequent disproportionation reaction. Core-shell nanoparticles, in which 15 nm crystalline Si is embedded within the amorphous SiOx matrix, form under typical PS-PVD conditions, while 10 nm amorphous particles are formed when processed with an increased degree of non-equilibrium effect. Addition of CH4 promotes reduction in the oxygen content x of SiOx, and thereby increases the Si volume in a nanocomposite particle. As a result, core-shell nanoparticles with x = 0.46 as anode exhibit increased initial efficiency and the capacity of lithium ion batteries while maintaining cyclability. Furthermore, it is revealed that the disproportionation reaction of SiO is promoted in nanosized particles attaining increased Si diffusivity by two orders of magnitude compared to that in bulk, which facilitates instantaneous composite nanoparticle formation during PS-PVD.  相似文献   

11.
《Thin solid films》1986,145(1):89-97
Silicon oxide films (SiOx(0≲x≲2)) were deposited onto Inconel 617 alloy for the purpose of corrosion protection in an impure helium environment. The protective behaviour of the deposited films was examined as a function of their chemical composition. The hypostoichiometric SiOx (x < 2) coatings showed poor protective effects. Rather, they enhanced carburization of the Inconel 617 substrate. This is because the interdiffusion of silicon and nickel is faster than the oxidation of SiOx to form protective SiO2. In the helium environment used, the rate of supply of oxygen was quite low. Stoichiometric SiO2 coatings, however, showed good protective qualities. They protected the Inconel 617 substrate from carburization and from selective oxidation at 1170 and 1270 K for 200 h. However, some deterioration in the protective effect is expected for longer exposure to this environment at 1270 K.  相似文献   

12.
This paper reports the preparation of Ag-coated SiOx nanowires and analyzes changes in the structural properties and photoluminescence (PL) spectra induced by a thermal annealing process. The thermal induced changes in the sample morphology, generating Ag nanoparticles on the core of SiOx nanowires and crystalline structures were affected, facilitating the generation of the Ag2SiO3 phase. The overall shape of the PL spectrum was changed significantly by both the Ag-coating and the subsequent thermal annealing. Possible emission mechanisms were discussed. This study gives insight into the annealing process regarding various coaxial one-dimensional materials, particularly with metal shell layers.  相似文献   

13.
Titanium (Ti)-based materials have been used for dental/orthopedic implants due to their excellent biological compatibility, superior mechanical strength and high corrosion resistance. The osseointegration of Ti implants is related to their composition and surface treatment. Better biocompatibility and anti-bacterial performances of Ti implant are beneficial for the osseointegration and for avoiding the infection after implantation surgery. In this study, nanocomposite ZrCN/amorphous carbon (a-C) coatings with different carbon contents were deposited on a bio-grade pure Ti implant material. A cathodic-arc evaporation system with plasma enhanced duct equipment was used for the deposition of ZrCN/a-C coatings. Reactive gas (N2) and C2H2 activated by the zirconium plasma in the evaporation process were used to deposit the ZrCN/a-C coatings. To verify the susceptibility of implant surface to bacterial adhesion, Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans), one of the major pathogen frequently found in the dental implant-associated infections, was chosen for in vitro anti-bacterial analyses. In addition, the biocompatibility of human gingival fibroblast (HGF) cells on coatings was also evaluated by a cell proliferation assay. The results suggested that the ZrCN/a-C coatings with carbon content higher than 12.7 at.% can improve antibacterial performance with excellent HGF cell compatibility as well.  相似文献   

14.
Nano sized Pt particles were successfully immobilized onto SiO2 and polystyrene-encapsulated silica core shell (SiO2@PS). To make the immobilization of Pt onto both silica and polystyrene-encapsulated silica core shell, SiO2 was first functionalized with -NH2 using 3-amino propyl trimethoxysilane (APTMS) while for core shell, the negatively charged surface of polystyrene (PS) was changed with positive charge by cationic surfactant such as cetyltrimethylammonium chloride (CTACl) to make the formation of SiO2 shell on preformed PS sphere. Transmission electron micrograph (TEM) images shows that Pt nanoparticles immobilized onto SiO2 and SiO2@PS were to be 3-4 nm without agglomeraiton. The energy dispersive spectroscope (EDS) shows that Pt contents on both SiO2 and SiO2@PS were to be 21.45% and 20.28%, respectively. In case of Pt-SiO2@PS, it is believed that Pt should have been immobilized onto PS surface and pore within SiO2 shell as well as SiO2 surface. The MEA fabricated with Pt-SiO2@PS shows better cell performance than of Pt-SiO2.  相似文献   

15.
The use of high‐capacity anode materials to overcome the energy density limits imposed by the utilization of low‐theoretical‐capacity conventional graphite has recently drawn increased attention. Until now, stress management (including strategies relying on size, surface coating, and free volume control) has been achieved by addressing the critical problems originating from significant anode volume expansion upon lithiation. However, commercially viable alternatives to graphite have not yet been found. A new stress‐management strategy relying on the use of a lamellar nanosphere Si anode is proposed. Specifically, nanospheres comprising ≈50 nm Si nanoparticles encapsulated by SiOx /Si/SiOx /C layers with thicknesses of <20 nm per layer are synthesized via one‐pot chemical vapor deposition in various atmospheres. SiOx is found to act as a stress management interlayer when it is located between Si and mitigates stress intensification on the surface layer, allowing nanospheres to maintain their morphological integrity and promoting the formation of a stable solid electrolyte interphase layer during cycling. When tested using an industrial protocol, a full cell comprising a nanosphere/graphite blended anode and a lithium cobalt oxide cathode achieve an average energy density of 2440.2 Wh L?1 (1.72 times higher than that of conventional graphite) with a capacity retention ratio of 80% after 101 cycles.  相似文献   

16.
Although being incorporated in commercial lithium‐ion batteries for a while, the weight portion of silicon monoxide (SiOx, x ≈ 1) is only less than 10 wt% due to the insufficient cycle life. Along this line, polymeric binders that can assist in maintaining the mechanical integrity and interfacial stability of SiOx electrodes are desired to realize higher contents of SiOx. Herein, a pyrene–poly(acrylic acid) (PAA)–polyrotaxane (PR) supramolecular network is reported as a polymeric binder for SiOx with 100 wt%. The noncovalent functionalization of a carbon coating layer on the SiOx is achieved by using a hydroxylated pyrene derivative via the π–π stacking interaction, which simultaneously enables hydrogen bonding interactions with the PR–PAA network through its hydroxyl moiety. Moreover, the PR's ring sliding while being crosslinked to PAA endows a high elasticity to the entire polymer network, effectively buffering the volume expansion of SiOx and largely mitigating the electrode swelling. Based on these extraordinary physicochemical properties of the pyrene–PAA–PR supramolecular binder, the robust cycling of SiOx electrodes is demonstrated at commercial levels of areal loading in both half‐cell and full‐cell configurations.  相似文献   

17.
Nanocomposite Ni(1 − x)/(SiO2)x soft magnetic materials were synthesized by a simple sol–gel combined hydrogen reduction method. The crystal structure of the particles was determined by X-ray diffraction (XRD). The shapes and sizes of the metal particles embedded in the SiO2 matrix were determined by transmission electron microscopy (TEM), and magnetic properties were measured by the vibrating samples magnetometer (VSM). The obtained nanocomposite material is composed of nanoparticles coated with a thin SiO2 layer, and with the content of the silicon increase, the thickness of the silica shells increase and the saturation magnetization decrease. The diameter of Ni particle in the sample is about 30–40 nm. The influence of the Ni content and preparation conditions on the microstructures and magnetic properties were discussed.  相似文献   

18.
FeOx, TiO2 and CeOx layers were deposited by pulsed laser deposition (PLD) technique onto Au films or Au nanoparticles supported on SiO2/Si(100). The samples were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), secondary ion mass spectrometry (SIMS) and their reactivity was studied in catalytic CO oxidation. Comparison was made with reference samples of FeOx/SiO2/Si(100), TiO2/SiO2/Si(100), CeOx/SiO2/Si(100) and Au/SiO2/Si(100) layers. The catalytic activity of the metal-oxide/Au/SiO2/Si(100) samples must be attributed to active sites located on the metal-oxides overlayer modified by gold underneath, since no Au was exposed to the surface according to the XPS and SIMS. We found a promoting effect of gold on the catalytic activity of the FeOx overlayer and an inhibiting effect of gold on the TiO2 and CeOx overlayers. These findings are discussed in terms of electronic interactions at the Au/metal oxide interface.  相似文献   

19.
To compare the optical damage resistance ability of SiO2 and ZnS, the processes of electrons reproduction of the two materials have been studied. The relationship of multiphoton ionization rate, avalanche ionization rate and the multiphoton parameter <?x?+?1?> with the intensity of the incident laser is calculated. The damage thresholds induced by the laser with different pulse widths are calculated too. In addition, the respectable role of the recombination and diffusion for an electron in the electronic proliferation processes is examined. Calculation results show that SiO2 has a higher damage threshold while τ?<?1?ns, and ZnS has a higher damage threshold while τ?>?1?ns.  相似文献   

20.
The authors investigate SiO x and TiO x (0 < x < 2) thin-film coatings with controlled absorption which are produced using a jet high-frequency plasma under conditions of dynamic vacuum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号