共查询到20条相似文献,搜索用时 12 毫秒
1.
The role of the four histidine residues in receptor binding and activity of mouse nerve growth factor (NGF) was investigated using both site-directed mutagenesis and chemical modification with diethyl pyrocarbonate. Replacement of His-75 or His-84 with alanine resulted in decreased biological activity and decreased affinity for p140(trkA); however, with H75A only, a 5-fold increased affinity toward p75(LANR) was observed. The effect of simultaneous replacement of both His-75 and His-84 was neither additive nor synergistic. Slight perturbations in circular dichroism spectra and weakened self-association of the mutants indicated that His-75 and His-84 may be involved in stability, dimerization, and/or folding of NGF. Diethyl pyrocarbonate modification of His-4 and His-8 in the H75A/H84Q double mutant abolished neuritogenesis, binding to both receptors, and phosphorylation of p140(trkA) in PC12 cells. These chemical and mutational results confirm and clarify previous evidence for the involvement of His-75 and His-84 (Dunbar, J. C., Tregear, G. W., and Bradshaw, R. A. (1984) J. Protein Chem. 3, 349-356) or His-4 and His-8 (Shih, A., Laramee, G. R., Schmelzer, C. H., Burton, L. E., and Winslow, J. W. (1994) J. Biol. Chem. 269, 27679-27686) in receptor binding of NGF. At least three and possibly all four histidines, which are located in three spatially distinct regions, contribute to maintenance of functional sites that are essential for receptor binding and activity of NGF. 相似文献
2.
Ephrin B proteins function as ligands for B class Eph receptor tyrosine kinases and are postulated to possess an intrinsic signaling function. The sequence at the carboxyl terminus of B-type ephrins contains a putative PDZ binding site, providing a possible mechanism through which transmembrane ephrins might interact with cytoplasmic proteins. To test this notion, a day 10.5 mouse embryonic expression library was screened with a biotinylated peptide corresponding to the carboxyl terminus of ephrin B3. Three of the positive cDNAs encoded polypeptides with multiple PDZ domains, representing fragments of the molecule GRIP, the protein syntenin, and PHIP, a novel PDZ domain-containing protein related to Caenorhabditis elegans PAR-3. In addition, the binding specificities of PDZ domains previously predicted by an oriented library approach (Songyang, Z., Fanning, A. S., Fu, C., Xu, J., Marfatia, S. M., Chishti, A. H., Crompton, A., Chan, A. C., Anderson, J. M., and Cantley, L. C. (1997) Science 275, 73-77) identified the tyrosine phosphatase FAP-1 as a potential binding partner for B ephrins. In vitro studies demonstrated that the fifth PDZ domain of FAP-1 and full-length syntenin bound ephrin B1 via the carboxyl-terminal motif. Lastly, syntenin and ephrin B1 could be co-immunoprecipitated from transfected COS-1 cells, suggesting that PDZ domain binding of B ephrins can occur in cells. These results indicate that the carboxyl-terminal motif of B ephrins provides a binding site for specific PDZ domain-containing proteins, which might localize the transmembrane ligands for interactions with Eph receptors or participate in signaling within ephrin B-expressing cells. 相似文献
3.
RH McCusker 《Canadian Metallurgical Quarterly》1998,81(6):1790-1800
The insulin-like growth factors (IGF) and insulin perform seemingly unique roles by causing the same metabolic effect: cellular hypertrophy. Although overlapping, there are different consequences to cellular hypertrophy induced by IGF and that induced by insulin. The IGF enhance the cell hypertrophy that is requisite for cell survival, hyperplasia, and differentiation, and insulin enhances cell hypertrophy primarily as a means to increase nutrient stores. The effects of IGF and insulin are controlled by the segregation of their receptors between different cell types. A model is discussed that describes the need for three hormones (IGF-I, IGF-II, and insulin) to control nutrient partitioning. Insulin receptor localization, as well as an episodic mode of secretion, evolved to perform the short-term action of clearing excess nutrients from the circulation. In contrast, a complex and interactive set of factors ensure that maximal IGF activity occurs only when conditions are optimal for growth. A relatively invariant rate of secretion and the IGF binding proteins serve to maintain a large mutable pool of IGF. This pool exists to ensure a constant supply of IGF to maintain the basal metabolic rate and to ensure that, once a cell begins to proliferate or differentiate, adequate exposure is available to complete the process even after severe short-term physiological insults. The IGF concentrations only change in response to prolonged differences in protein and energy availabilities, environmental and body temperatures, and external stress. Also, evidence is now emerging that describes a discrete role for trace nutrients in the regulation of IGF activity. In this latter regard, zinc has the notable role of targeting IGF binding proteins to the cell surface. New data are presented showing that zinc also changes the affinity of the type 1 IGF receptor and cell-associated IGF binding proteins to optimize IGF activity. 相似文献
4.
VA Blakesley AP Koval BS Stannard A Scrimgeour D LeRoith 《Canadian Metallurgical Quarterly》1998,273(29):18411-18422
Insulin-like growth factor (IGF)-I signaling through the IGF-I receptor modulates cellular adhesion and proliferation and the transforming ability of cells overexpressing the IGF-I receptor. Tyrosine phosphorylation of intracellular proteins is essential for this transduction of the IGF-I-induced mitogenic and tumorigenic signals. IGF-I induces specific cytoskeletal structure and the phosphorylation of proteins in the associated focal adhesion complexes. The determination of the exact pathways emanating from the IGF-I receptor that are involved in mediating these signals will contribute greatly to the understanding of IGF-I action. We have previously shown that replacement of tyrosine residues 1250 and 1251 in the carboxyl terminus of the IGF-I receptor abrogates IGF-I-induced cellular proliferation and tumor formation in nude mice. In this study, replacement of either tyrosine 1250 or 1251 similarly reduces the cells ability to grow in an anchorage-independent manner. The actin cytoskeleton and cellular localization of vinculin are disrupted by replacement of tyrosine 1251. Tyrosine residues 1250 and 1251 are not essential for tyrosine phosphorylation of two known substrates; insulin receptor substrate-1 and SHC, nor association of known downstream adaptor proteins to these substrates. In addition, these mutant IGF-I receptors do not affect IGF-I-stimulated p42/p44 mitogen-activated protein kinase activation or phosphatidylinositol (PI) 3'-kinase activity. Thus, it appears that in fibroblasts expressing tyrosine 1250 and 1251 mutant IGF-I receptors, the signal transduction pathways impacting on mitogenesis and tumorigenesis do not occur exclusively through the PI 3'-kinase or mitogen-activated protein kinase pathways. 相似文献
5.
There is growing evidence that nerve growth factor may be an important mediator of the sensory disorders associated with inflammation. This hypothesis was tested in a rat model of cystitis. In this model, an experimental inflammation is created in anaesthetized rats with an irritant chemical. Within 1 h, bladder reflexes, activated by the sensory innervation of this viscus, become exaggerated, mimicking the disorders seen in humans with chronic cystitis. The development of this hyper-reflexia following experimental inflammation was quantified using the technique of repeated cystometrograms. By several measures, bladder reflex excitability increased about three-fold after 5 h. Firstly, the study investigated whether inflammatory changes can be prevented by pharmacological antagonism of nerve growth factor. A synthetic fusion protein was used, consisting of the extracelluar domain of the high-affinity nerve growth factor receptor, trkA, coupled to the Fc portion of an immunoglobulin. Previous work has shown that this molecule can sequester nerve growth factor and reduce its bioavailability both in vitro and in vivo. Treatment of animals with the fusion molecule at 1 mg/kg, immediately before inflammation of the bladder, largely, and very significantly, prevented the expected increases in reflex excitability of this organ. Pretreatment with a related fusion protein, capable of sequestering the neurotrophin brain-derived neurotrophic factor and neurotrophin-4/5, but not nerve growth factor, was without effect. Similarly, a control fusion molecule, without neurotrophin-sequestering capacity, did not reduce the inflammation-induced hyper-reflexia. Systemic treatment with the nerve growth factor-sequestering molecule, but not control molecules, partially and significantly reversed established inflammatory changes, by about 30-60%, depending on outcome measure. The nerve growth factor-sequestering protein had no significant effects on bladder reflex excitability in the uninflamed state. It was also without significant effect on capsaicin-induced contractions of the urinary bladder. Administration of exogenous nerve growth factor into the lumen of the urinary bladders of normal anaesthetized rats produced a rapid and marked bladder hyper-reflexia similar to that seen with experimental inflammation. These findings are consistent with other circumstantial evidence that nerve growth factor may interact with visceral sensory systems. Together, the data strongly suggest that nerve growth factor produced in inflamed tissues is a critical mediator of the sensory disorders associated with inflammation. 相似文献
6.
7.
8.
Flt-1 is one of two receptor tyrosine kinases through which the angiogenic factor vascular endothelial growth factor (VEGF) functions. Placenta growth factor (PlGF) is an additional ligand for Flt-1. The second immunoglobulin-like domain in the extracellular domain of Flt-1 has previously been identified as the region containing the critical ligand-binding determinants. We analyzed the contribution of charged residues within the first three domains of Flt-1 to ligand binding by alanine-scanning mutagenesis. Domain 2 residues Arg159, Glu208 and His223-Arg224 (together) affect both VEGF and PlGF binding, while Glu137, Lys171, His223, and Arg224 affect PlGF but not VEGF. Several charged residues, especially Asp187, are important in maintaining the structural integrity of domain 2. In addition, some residues in domain 3 contribute to binding (Asp231) or provide for additional discrimination between ligands (Arg280-Asp283). 相似文献
9.
All receptor tyrosine kinases share a common intracellular signaling machinery, including ras activation, whereas cellular responses vary from mitogenesis to cell differentiation. To investigate the structural basis for receptor tyrosine kinase action for nerve growth factor, the juxtamembrane region of TrkA was transferred to a corresponding region of the epidermal growth factor (EGF) receptor. The resulting chimeric receptor contains an additional Shc site, Tyr490, in the juxtamembrane region. In transfected PC12 cell lines, neuronal differentiation was observed with EGF treatment, as evidenced by increased neurite extension. The action of the chimeric receptor was correlated with prolonged activation of MAP kinases and a 3-4-fold increase in phosphatidylinositol 3-kinase activity. The effect of the juxtamembrane chimera was dependent upon the Shc site at Tyr490, because expression of a chimeric receptor containing a Y490F mutation resulted in a complete loss of neuritogenesis by EGF treatment. These findings indicate that the juxtamembrane region of the TrkA receptor serves as a key functional domain that can confer a dominant effect upon neuronal differentiation. 相似文献
10.
We have developed an in vitro system for studying the interaction of chick dorsal root ganglion neuronal growth cones with a localized source of nerve growth factor (NGF) covalently conjugated to polystyrene beads. Growth cones rapidly turned and migrated under NGF-coated beads in a process that involved the initial formation of persistent contact with a bead, followed by directed flow of cytoplasm toward the point of contact. A role for the local activation of the high-affinity NGF receptor trkA was suggested by a strong inhibition of the turning response by (1) the addition of an antibody against the extracellular portion of trkA, (2) the elevation of the background concentration of NGF to saturate trkA, or (3) the presence of a concentration of the drug K252a that inhibits trkA activation. NGF binding to the pan-neurotrophin receptor p75 is also involved but is not required for turning. These data show a new role for both the trkA and the p75 receptors: the mediation of local events in the guidance of nerve growth cones. 相似文献
11.
LL Kiefer OR Ittoop K Bunce AT Truesdale DH Willard JS Nichols SG Blanchard K Mountjoy WJ Chen WO Wilkison 《Canadian Metallurgical Quarterly》1997,36(8):2084-2090
Several mutations that cause ectopic expression of the agouti gene result in obesity, hyperinsulinemia, and yellow coat color. A candidate pathway for agouti induced obesity and hyperinsulinemia is through altered signaling by melanocortin receptors, as agouti normally regulates coat coloration through antagonism of melanocortin receptor 1. Furthermore, melanocortin peptides mediate functions including steroidogenesis, lipolysis, and thermoregulation. We report apparent inhibition dissociation constants for mouse and human agouti protein inhibition of ligand binding to the melanocortin receptors, to determine which of these receptors might be involved in agouti induced diabetes. The similarity in the apparent K(I) values for agouti inhibition of ligand binding to the brain melanocortin receptors 3 and 4 (mouse: K(I) app = 190 +/- 74 and 54 +/- 18 nM; human: K(I) app = 140 +/- 56 and 70 +/- 18 nM, respectively) suggests that the MC3-R is a potential candidate for a receptor mediating the effects of agouti protein overexpression. Agouti residues important for melanocortin receptor inhibition were identified through the analysis of deletion constructs and site-specific variants. Val83 is important for inhibition of binding to MC1-R (K(I) app for Val83Ala agouti increased 13-fold relative to wild-type protein). Arg85, Pro86, and Pro89 are important for selective inhibition of binding between MC1-R and MC3-R and MC4-R as their apparent K(I) values are essentially unchanged at MC1-R, while they have increased 6-10-fold relative to wild-type protein at MC3-R and MC4-R. 相似文献
12.
HW Christinger YA Muller LT Berleau BA Keyt BC Cunningham N Ferrara AM de Vos 《Canadian Metallurgical Quarterly》1996,26(3):353-357
Vascular endothelial growth factor (VEGF) is a potent angiogenic factor with a unique specificity for vascular endothelial cells. In addition to its role in vasculogenesis and embryonic angiogenesis, VEGF is implicated in pathologic neovascularization associated with tumors and diabetic retinopathy. Four different constructs of a short variant of VEGF sufficient for receptor binding were overexpressed in Escherichia coli, refolded, purified, and crystallized in five different space groups. In order to facilitate the production of heavy atom derivatives, single cysteine mutants were designed based on the crystal structure of platelet-derived growth factor. A construct consisting of residues 8 to 109 was crystallized in space group P2(1), with cell parameters a = 55.6 A, b = 60.4 A, c = 77.7 A, beta = 90.0 degrees, and four monomers in the asymmetric unit. Native and derivative data were collected for two of the cysteine mutants as well as for wild-type VEGF. 相似文献
13.
14.
MC Slootweg C Ohlsson JP Salles CP de Vries JC Netelenbos 《Canadian Metallurgical Quarterly》1995,136(10):4210-4217
GH exerts its biological actions on osteoblasts through a specific high affinity receptor expressed on these cells. GH receptor binding is positively modulated by a number of factors, including retinoic acid and dexamethasone, whereas fetal calf serum strongly decreases the binding. To identify responsible factors in serum, components of serum, the insulin-like growth factors (IGFs)-I and -II, and IGF binding proteins (IGFBPs)-2 and -3 were tested for a possible negative modulatory role. IGF-I and -II decreased [125I]hGH binding at an optimal concentration of 30 ng/ml for IGF-I and 100 ng/ml IGF-II, reducing the binding to 51% and 55%, respectively, of control values. A stimulation of [125I]hGH binding was observed with IGFBP-2 as well as IGFBP-3, inducing an increase to 148% and 151% of control binding at an optimal concentration of 3000 ng/ml for both peptides. The effects of all peptides were dependent on the incubation time, being significantly increased after 8 h of incubation and reaching the full effect thereafter. The effects were declined at 24 h compared with 16 h for IGFBP-2 and -3 but not for IGF-I and -II. Coincubation of the cells with IGF-I and -II and IGFBP-2 and -3 neutralized the effects of the factors alone. In conclusion, these results show that IGF-I and -II on the one hand and IGFBP-2 and -3 on the other hand exert opposite actions on [125I]hGH binding, IGFBP-2 and -3 exerting probably an IGF-independent effect. Further, IGF-I and -II decreased GH receptor messenger RNA (mRNA) levels, as quantified by a solution hybridization ribonuclease protection assay, from 8.65 +/- 1.78 attomoles (amol)/microgram DNA (control) to 2.4 +/- 0.68 and 2.16 +/- 0.92 amol/microgram DNA, respectively. IGFBP-2 increased GH receptor mRNA levels from 5.26 +/- 1.17 (control) to 13.19 +/- 3.48. Incubation with IGFBP-3 did not result in stimulation of GH receptor mRNA levels (8.59 +/- 2.91 amol/microgram DNA). This shows that the mechanism of regulation of the GH receptor is, except for IGFBP-3, at least in part on the mRNA level. Lastly, IGFBP-2 and IGFBP-3 are mitogenic for UMR-106.01 rat osteosarcoma cells, inducing an increase in cell number to 125% and 142% of control cell counts after 48 h of incubation with 1000 ng/ml IGFBP-2 and -3, whereas IGF-I, IGF-II and Long R3 IGF-I did not stimulate proliferation. IGFBP-2 and -3 potentiate hGH induced mitogenesis at low hGH concentrations of both factors, whereas at higher concentrations no such effect is observed.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
15.
The role of calmodulin (CaM) in apoptosis induced by gp160 of human immunodeficiency virus type 1 was investigated with cells undergoing single-cell killing. These cells were found to express, under the control of an inducible promoter, wild-type gp160 or mutant gp160 devoid of various lengths of the carboxyl terminus. Immunoprecipitation accompanied by immunoblotting revealed binding of CaM to wild-type gp160 but not to mutant gp160 bearing a carboxyl terminus with a deletion spanning more than five amino acid residues. A significant coenzyme activity was detected in the CaM bound to gp160 even in the presence of a Ca2+ chelater, EGTA. The cells forming this gp160-CaM complex exhibited an elevated intracellular Ca2+ level followed by DNA fragmentation, which is a hallmark of apoptosis, and finally cell killing, while the cells not forming this complex did not show any significant elevation in Ca2+ level or DNA fragmentation. These results thus indicated that CaM plays a key role in gp160-induced apoptosis. 相似文献
16.
The insulin-like growth factors (IGFs) are transported by a family of high-affinity binding proteins (IGFBPs) that protect IGFs from degradation, limit their binding to IGF receptors, and modulate IGF actions. The six classical IGFBPs have been believed to have no affinity for insulin. We now demonstrate that IGFBP-7/mac25, a newly identified member of the IGFBP superfamily that binds IGFs specifically with low affinity is a high-affinity insulin binding protein. IGFBP-7 blocks insulin binding to the insulin receptor and thereby inhibiting the earliest steps in insulin action, such as autophosphorylation of the insulin receptor beta subunit and phosphorylation of IRS-1, indicating that IGFBP-7 is a functional insulin-binding protein. The affinity of other IGFBPs for insulin can be enhanced by modifications that disrupt disulfide bonds or remove the conserved COOH terminus. Like IGFBP-7, an NH2-terminal fragment of IGFBP-3 (IGFBP-3((1-87))), also binds insulin with high affinity and blocks insulin action. IGFBPs with enhanced affinity for insulin might contribute to the insulin resistance of pregnancy, type II diabetes mellitus, and other pathological conditions. 相似文献
17.
MW Pantoliano RA Horlick BA Springer DE Van Dyk T Tobery DR Wetmore JD Lear AT Nahapetian JD Bradley WP Sisk 《Canadian Metallurgical Quarterly》1994,33(34):10229-10248
The binding interactions for the three primary reactants of the fibroblast growth factor (FGF) system, basic FGF (bFGF), an FGF receptor, FGFR1, and the cofactor heparin/heparan sulfate (HS), were explored by isothermal titrating calorimetry, ultracentrifugation, and molecular modeling. The binding reactions were first dissected into three binary reactions: (1) FGFR1 + bFGF<==>FGFR1/bFGF, K1 = 41 (+/- 12) nM; (2) FGFR1 + HS<==>FGFR1/HS, K2 = 104 (+/- 17) microM; and (3) bFGF + HS<==>bFGF/HS, K3 = 470 (+/- 20) nM, where HS = low MW heparin, approximately 3 kDa. The first, binding of bFGF to FGFR1 in the absence of HS, was found to be a simple binary binding reaction that is enthalpy dominated and characterized by a single equilibrium constant, K1. The conditional reactions of bFGF and FGFR1 in the presence of heparin were then examined under conditions that saturate only the bFGF heparin site (1.5 equiv of HS/bFGF) or saturate the HS binding sites of both bFGF and FGFR1 (1.0 mM HS). Both 3-and 5-kDa low MW heparins increased the affinity for FGFR1 binding to bFGF by approximately 10-fold (Kd = 4.9 +/- 2.0 nM), relative to the reaction with no HS. In addition, HS, at a minimum of 1.5 equiv/bFGF, induced a second FGFR1 molecule to bind to another lower affinity secondary site on bFGF (K4 = 1.9 +/- 0.7 microM) in an entropy-dominated reaction to yield a quaternary complex containing two FGFR1, one bFGF, and at least one HS. Molecular weight estimates by analytical ultracentrifugation of such fully bound complexes were consistent with this proposed composition. To understand these binding reactions in terms of structural components of FGFR1, a three-dimensional model of FGFR1 was constructed using segment match modeling. Electrostatic potential calculations confirmed that an elongated cluster, approximately 15 x 35 A, of nine cationic residues focused positive potential (+2kBT) to the solvent-exposed beta-sheet A, B, E, C' surface of the D(II) domain model, strongly implicating this locus as the HS binding region of FGFR1. Structural models for HS binding to FGFR1, and HS binding to bFGF, were built individually and then assembled to juxtapose adjacent binding sites for receptor and HS on bFGF, against matching proposed growth factor and HS binding sites on FGFR1. The calorimetric binding results and the molecular modeling exercises suggest that bFGF and HS participate in a concerted bridge mechanism for the dimerization of FGFR1 in vitro and presumably for mitogenic signal transduction in vivo.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
18.
Cytokines such as interferon-gamma (IFN-gamma), which utilize the well studied JAK/STAT pathway for nuclear signal transduction, are themselves translocated to the nucleus. The exact mechanism for the nuclear import of IFN-gamma or the functional role of the nuclear translocation of ligand in signal transduction is unknown. We show in this study that nuclear localization of IFN-gamma is driven by a simple polybasic nuclear localization sequence (NLS) in its COOH terminus, as verified by its ability to specify nuclear import of a heterologous protein allophycocyanin (APC) in standard import assays in digitonin-permeabilized cells. Similar to other nuclear import signals, we show that a peptide representing amino acids 95-132 of IFN-gamma (IFN-gamma(95-132)) containing the polybasic sequence 126RKRKRSR132 was capable of specifying nuclear uptake of the autofluorescent protein, APC, in an energy-dependent fashion that required both ATP and GTP. Nuclear import was abolished when the above polybasic sequence was deleted. Moreover, deletions immediately NH2-terminal of this sequence did not affect the nuclear import. Thus, the sequence 126RKRKRSR132 is necessary and sufficient for nuclear localization. Furthermore, nuclear import was strongly blocked by competition with the cognate peptide IFN-gamma(95-132) but not the peptide IFN-gamma(95-125), which is deleted in the polybasic sequence, further confirming that the NLS properties were contained in this sequence. A peptide containing the prototypical polybasic NLS sequence of the SV40 large T-antigen was also able to inhibit the nuclear import mediated by IFN-gamma(95-132). This observation suggests that the NLS in IFN-gamma may function through the components of the Ran/importin pathway utilized by the SV40 T-NLS. Finally, we show that intact IFN-gamma, when coupled to APC, was also able to mediate its nuclear import. Again, nuclear import was blocked by the peptide IFN-gamma(95-132) and the SV40 T-NLS peptide, suggesting that intact IFN-gamma was also transported into the nucleus through the Ran/importin pathway. Previous studies have suggested a direct intracellular role for IFN-gamma in the induction of its biological activities. Based on our data in this study, we suggest that a key intracellular site of interaction of IFN-gamma is the one with the nuclear transport mechanism that occurs via the NLS in the COOH terminus of IFN-gamma. 相似文献
19.
Erythrocyte protein 4.1 (P4.1) is an 80-kD cytoskeletal protein that is important for the maintenance of the structural integrity and flexibility of the red blood cell membrane. Limited chymotryptic digestion of erythroid P4.1 yields 4 structural domains corresponding to the 30-, 16-, 10-, and 22/24-kD domains. Using a yeast two-hybrid system, we isolated cDNA clones encoding pICln that specifically interacts with the 30-kD domain of P4.1. In this report, we show that the carboxyl-terminus (amino acid residues 103-237) of pICln binds to the 30-kD domain of P4.1 in a yeast two-hybrid system. The direct association between the 30-kD domain of P4.1 and pICln was further confirmed by the following findings: (1) the S35-methione-labeled pICln specifically bound to both GST/P4.1-80 (80 kD) and GST/P4.1-30 (30 kD) fusion proteins, but not to the proteins that lack the 30-kD domain; (2) coimmunoprecipitation analysis of the cell extracts from transfected SiHa cells showed that pICln and P4.1 associate in transfected cells. It was reported that pICln can form a complex with actin and may play a role involved in cellular volume regulation. The direct association between P4.1 and pICln suggests that pICln may link P4.1-bound cytoskeletal elements to an unidentified volume-sensitive chloride channel. 相似文献
20.
R Barnard G Thordarson MF Lopez M Yamaguchi A Edens SD Cramer L Ogren F Talamantes 《Canadian Metallurgical Quarterly》1994,140(1):125-135
GH-binding protein (GHBP) or GH receptor is present in numerous extrahepatic tissues in the rodent. From mid- to late gestation in the mouse, the maternal serum concentration of GHBP increases 30- to 50-fold. We have investigated whether the placenta might synthesize GHBP and potentially contribute to this increase. RNA was isolated from placentas and subjected to Northern analysis using a cDNA probe to the shared region of GHBP and GH receptor-encoding mRNAs. From day 8 to day 18 of gestation, the GHBP-encoding mRNA (1.4 kb) increased 45-fold in quantity. The GH receptor-encoding mRNA (4.2 kb) increased sixfold by day 14 and then remained steady until day 18. These changes which were not co-ordinated parallel reported changes in the steady-state concentrations of 1.4 and 4.2 kb mRNAs in maternal liver, suggesting shared regulatory factors. Extracts of freshly isolated trophoblasts were assayed for GHBP with a radioimmunoassay specific for GHBP with a hydrophilic carboxyl terminus. The cytosolic content of immunoreactive GHBP increased fourfold from mid- to late gestation. Trophoblasts were isolated from placentas and cultured for 2 days on collagen gels in defined medium. Cultured cells were at least 90% viable and secreted mouse placental lactogen-II (mPL-II). Immunocytochemistry was carried out simultaneously on cells cultured from day 7 to day 17 of gestation using a monoclonal antibody (MAb 4.3), which recognizes the hydrophilic C-terminus of GHBP. Cell-localized GHBP was present in trophoblasts cultured for 2 days, but GHBP was not detectable by radioimmunoassay or by immunoprecipitation in concentrated culture media from cultures treated with 100 ng mouse GH/ml or 100 ng mPL-II/ml or from untreated cultures. RNA was isolated from cells cultured in an identical manner to those analysed by immunocytochemistry. Three GH receptor/GHBP mRNA species of 8, 4.2 and 1.4 kb were observed. The quantity of 4.2 and 1.4 kb mRNAs did not change significantly in cultures from day 7 to day 15 of gestation but, in cultures from day 17 of gestation, the amount of 1.4 kb mRNA dropped significantly, while that of the 4.2 kb mRNA remained unchanged. GHBP- and GH receptor-encoding mRNAs are not co-ordinately regulated in vivo or in vitro. Although mPL-II was secreted into the medium by cultured trophoblasts, secretion of GHBP could not be detected. The culture medium may not contain the specific factors required for secretion of placental GHBP, or placental GHBP may not be destined for secretion.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献