首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, some results of the study on the roles of the dopants in the LiF:Mg,Cu,Na,Si thermoluminescent (TL) material that was developed at the Korea Atomic Energy Research Institute for radiation protection are presented. Although there have been many studies to investigate the roles of the dopants in LiF:Mg,Cu,P TL material in the TL process, there are some discrepancies in the understanding of the roles of Cu and P between various researchers. In case of LiF:Mg,Cu,Na,Si TL material, there are a few studies on the roles of the dopants. Three kinds of samples in each of which one dopant is excluded, and the optimised sample, were prepared for this study. The measurements and analysis of the three-dimensional TL spectra, based on the temperature, wavelength and intensity, and the glow curves for those samples are used in this study. The results show that Mg plays a role in the trapping of the charge carriers and Cu plays a role in the luminescence recombination process; however, the effect of Na and Si on the glow curve structure and the TL emission spectra is much less than that of Mg and Cu. It is considered that Na and Si each plays a role in the improvement of the luminescence efficiency.  相似文献   

2.
Sintered LiF:Mg,Cu,Na,Si thermoluminescence (TL) pellets have been developed for application in radiation dosimetry. LiF:M,Cu,Na,Si TL pellets were made from TL powders using a sintering process, that is, pressing and heat treatment. These pellets have a diameter of 4.5 mm, and a thickness of 0.8 mm are blue in colour and have a mass of 28 mg each. After 400 pellets had been produced they were irradiated with 137Cs gamma radiation and samples having a sensitivity within a +/-5% standard deviation were selected for experimental use. In the present study, the physical and dosimetric properties of LiF:Mg,Cu,Na,Si TL pellets were investigated for their emission spectrum, dose response, energy response and fading characteristics. Photon irradiation for the experiments was carried out using X ray beams and a 137Cs gamma source at the Korea Atomic Energy Research Institute (KAERI). The average energies and the dose were in the range of 20-662 keV and 10(-6) - 10(2) Gy respectively. The glow curves were measured with a manual type thermoluminescence dosimetry reader (system 310, Teledyne) at a constant nitrogen flux and a linear heating rate. For a constant heating rate of 5 degrees C.s(-1). the main dosimetric peak of the glow curve appeared at 234 degrees C, its activation energy was 2.34 eV and the frequency factor was 1.00 x 10(23). The TL emission spectrum appeared at the blue region centred at 410 nm. A linearity of photon dose response was maintained up to 100 Gy. The photon energy responses relative to the 137Cs response were within +/-20% in the overall photon energy region. No fading of the TL sensitivity of the pellets stored at room temperature was found over the course of a year. Therefore LiF:Mg,Cu,Na,Si TL pellets can be used for personal dosimetry, but more research is needed to improve the characteristics for repeated use.  相似文献   

3.
A procedure for synthesis of the highly sensitive pellet-type LiF:Mg,Cu,Na,Si thermoluminescent (TL) detector has been newly developed. It was found that the optimum concentrations of dopants for a pellet-type LiF:Mg,Cu,Na,Si TL detector were found to be Mg: 0.2 mol %, Cu: 0.05 mol %, Na: 0.9 mol%, and Si: 0.9 mol%. The TL sensitivity of this new detector was about 30 times higher than that of the TLD-100 by light integration measurements. Reusability study of the detector was carried out for 10 cycles. The results show that the coefficients of variation for each detector separately did not exceed 0.016, and that for all 10 detectors collectively was 0.0054.  相似文献   

4.
The thermoluminescence (TL) of LiF:Mg,Ti has been studied using a high resolution CCD spectrophotometer, which simultaneously measures the emission intensity and the emission spectrum as a function of sample temperature. Computerised deconvolution was used to resolve the emission spectrum into individual Gaussian bands and the TL glow curve into glow peaks. Correction for spectral response and non-linear changes in dispersion were taken into account in the evaluation of the emission spectra. The emission spectra of all TL glow peaks following 200 Gy beta irradiation were found to consist of a common set of five emission bands at 2.49 eV, 2.64 eV, 2.84 eV, 3.1 eV and 3.59 eV, of which the 2.95 eV and 3.59 eV bands have not been previously observed at these dose levels. The band characteristics (E, deltaE) are not sample temperature or dose dependent indicating that the same LCs or the same single centre with several excited states are common to all the glow peaks. The relative intensities of the emission bands do. however, change as a function of readout temperature and dose, a behaviour that could be connected to a temperature and dose dependent perturbation between spatially coupled TCs and LCs.  相似文献   

5.
6.
On the basis of the newly discovered behaviour of LiF:Mg,Cu,P detectors at high and ultra-high doses, a new method of thermoluminescence (TL) measurement of radiation doses ranging from micrograys up to a megagray, has been recently developed at the Institute of Nuclear Physics (IFJ). The method is based on the relationship between the TL signal, integrated in the given temperature range and dose. It is quantified by a parameter called the 'ultra-high temperature ratio'. It has been demonstrated that this new method can measure radiation doses in the range of about 1 μGy to 1 MGy, using a single LiF:Mg,Cu,P detector. This method was recently successfully blindly tested for 10 MeV electrons up to doses of 200 kGy. It can be used for dosimetry in high-energy accelerators, especially in the Large Hadron Collider at CERN, and has great potential for accident dosimetry in particular.  相似文献   

7.
LiF is a well-known thermoluminescent (TL) material used in individual monitoring, and its fading characteristics have been studied for years. In the present study, the fading characteristics (for a period of 150 d) of various commercial LiF materials with different dopants have been evaluated. The materials used in the study are those used in routine procedures by the Personal Dosimetry Department of Greek Atomic Energy Commission and in particular, LiF:Mg,Ti (MTS-N, TL Poland), LiF:Mg,Cu,P (MCP-N, TL Poland), LiF:Mg,Cu,P (MCP-Ns, thin active layer detector, TL Poland) and LiF:Mg,Cu,P (TLD100H, Harshaw). The study showed that there is a sensitivity loss in signal of up to 20 % for the MTS-N material for a 150-d period in the pre-irradiation fading phase. The MCP-N has a stable behaviour in the pre-irradiation fading phase, but this also depends on the readout system. As far as the post-irradiation fading effect is concerned, a decrease of up to 20 % for the MTS-N material is observed for the same time period. On the other hand, the LiF:Mg,Cu,P material presents a stable behaviour within ± 5 %. These results show that the fading effect is different for each material and should be taken into account when estimating doses from dosemeters that are in use for >2 months.  相似文献   

8.
9.
A method of measurement of radon concentration in air was developed, based on high-sensitivity LiF:Mg,Cu,P (MCP-N, TLD Poland) thermoluminescent detectors installed in charcoal canisters. The canisters were exposed typically for 72 h in a calibration chamber with a radon concentration ranging from 100 Bq x m(-3) to 87 kBq x m(-3). It was found that in these conditions the signal registered by the TL detectors was proportional to the 222Rn concentration and the lowest limit of detection (LLD) was at a level of 100 Bq x m(-3). The proposed method can be used in large-scale, multi-site surveys aimed at screening for high levels of indoor radon concentration or for measuring ground radon exhalation rates.  相似文献   

10.
Recently, two new types of 'tissue equivalent' thermoluminescent detectors (TLDs) have aroused attention: LiF:Mg,Cu,Na,Si and Li2B4O7:Cu,Ag,P. In this work the characteristics of both detectors were compared with the characteristics of the well-known type LiF:Mg,Ti detector, TLD-100. The following properties were investigated: the glow curve structures, relative sensitivity, batch homogeneity and uniformity, detection threshold, reproducibility of the response, linearity in the wide dose range and fading. Also, the energy dependence for medium and low energy X rays was determined in the range of mean energies between 33 and 116 keV. The results confirmed 'tissue equivalency' of both new types in the investigated range of photon energies. LiF:Mg,Cu,Na,Si detector has very high sensitivity (approximately 75 times higher than that of TLD-100) and is convenient for use in a very low range of doses. Li2B4O7:Cu,Ag,P detector shows some improvements in comparison with the previously prepared types of lithium borate. The most important is the five times higher sensitivity than that of TLD-100. This detector is also very promising, especially in medical dosimetry.  相似文献   

11.
Three-dimensional thermoluminescence (TL) spectra based on temperature, wavelength and intensity for newly developed LiF:Mg,Cu,Na,Si TL material at the Korea Atomic Energy Research Institute (KAERI) were measured and analysed. The glow curves were obtained by integration of luminescence intensity over all wavelengths at each temperature, and various trapping parameters related to the traps were determined by analysing these curves. A computerised glow curve deconvolution (CGCD) method which was based on the general order kinetics (GOK) model was used for the glow curve analysis. The glow curves of LiF:Mg,Cu,Na,Si TL material were deconvoluted to six isolated glow curves which have peak temperatures at 333, 374, 426, 466, 483 and 516 K. The main glow peak of peak temperature at 466 K had activation energy of 2.06 eV and a kinetic order of 1.05. This TL material was also found to have three recombination centres, 1.80 eV, 2.88 eV and 3.27 eV by analysis of the TL spectra.  相似文献   

12.
13.
In this paper, the various models dealing with the effects of ionisation density on the thermoluminescence (TL) response (efficiency) of TL LiF dosemeters are discussed. These include (i) the Unified Interaction Model (UNIM), which models photon/electron linear/supralinear dose response; (ii) the Extended Track Interaction Model (ETIM), which models heavy charged particle (HCP) TL fluence response; (iii) Modified Track Structure Theory (MTST), which models relative HCP TL efficiencies; and (iv) Microdosimetric Target Theory (MTT), which models both relative HCP efficiencies and photon energy response.  相似文献   

14.
LiF-based thermoluminescence (TL) materials have been widely used for radiation dosimetry due to their attractive features. LiF:Mg,Cu,P is one of the most sensitive tissue-equivalent TL materials, approximately 40 times more sensitive than LiF:Mg,Ti (TLD-100), but it has two main drawbacks: a thermal loss of the TL sensitivity when annealed at temperatures >240 degrees C, and a relatively high-residual signal. Recently, LiF:Mg,Cu,Na,Si TL material was developed to overcome these drawbacks at the Korea Atomic Energy Research Institute, but it provided only marginal improvements in reducing the residual signal. The newly developed LiF:Mg,Cu,Si TL material has a significantly lower residual signal and a better stability to thermal treatments. In this article, the preparation method and some dosimetric properties (sensitivity and residual signal) of the new LiF:Mg,Cu,Si TL material are presented. At the end of the preparation procedures, a dual-step annealing method is introduced and this has proved as a very efficient method to reduce the high-temperature peak and is the cause of residual signal. Therefore, the high-temperature peak in the glow curve was significantly reduced. The sensitivity is approximately 20 times higher than that of TLD-100 and the residual signal was estimated to be approximately 0.04%.  相似文献   

15.
The photon energy response of different RADOS (Mirion Technologies) personal dosemeters with MTS-N (LiF:Mg,Ti) and MCP-N (LiF:Mg,Cu,P) thermoluminescence (TL) detectors was investigated. Three types of badges were applied. The irradiation with reference photon radiation qualities N (the narrow spectrum series), and S-Cs and S-Co nuclide radiation qualities, specified in ISO 4037 [International Organization for Standardization (ISO). X and gamma reference radiations for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy. ISO 4037. Part 1-4 (1999)], in the energy range of 16-1250 keV, were performed at the Dosimetry Laboratory Seibersdorf. The results demonstrated that a readout of a single MTS-N or MCP-N detector under the Al filter can be used to determine Hp(10) according to requirements of IEC 61066 [International Electrotechnical Commission (IEC). Thermoluminescence dosimetry systems for personal and environmental monitoring. International Standard IEC 61066 (2006)] for TL systems for personal dosimetry. The new RADOS badge with the experimental type of a holder (i.e. Cu/Al filters) is a very good tool for identifying the radiation quality (photon energy).  相似文献   

16.
17.
In this paper, the results aimed at assessing the performance of two varieties of LiF detectors (LiF:Mg,Ti and LiF:Mg,Cu,P) in photon fields relatively to reproducibility, detection threshold and angular dependence as defined in the ISO 12794 standard are presented. The fading properties and the limit of detection were also investigated for both materials. The results suggest that both LiF varieties are well suited for extremity monitoring. However, better fading properties of LiF:Mg,Cu,P when compared with LiF:Mg,Ti, combined with previous results relatively to energy dependence suggests that LiF:Mg,Cu,P dosemeters are better suited for extremity monitoring.  相似文献   

18.
19.
The results of a study of two commercially available LiF(Mg,Cu,P) TL materials, a GR200 detector and a MCP-Ns thin detector, are described in order to use these phosphors for individual monitoring for the extremities. After a dosimetry system has been type tested, the implementation routine is not straightforward. Additional tests and software modification are needed to make the routine system work comply with the type test results. Not often can literature be found on the steps required to implement the results in a routine study. This paper reports the results of the individual calibration of about 15 000 extremity dosemeters, 12 000 containing a GR200 detector and 3000 an MCP-Ns thin detector. It describes the experimental procedure followed in order to assure reproducibility and stability of the results with proper accuracy and reliability. In particular, this is the first time that results on homogeneity of such a large batch of MCP-Ns detectors are reported.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号