共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple three-step strategy to functionalize multiwalled carbon nanotubes using 1,2-distearoyl-sn-glycero-3-phosphoethanolamine phospholipids has been described. The resulting phospholipid-modified multiwalled carbon nanotubes were analyzed by TEM, AFM, NMR, IR, UV-vis and TGA techniques. The experimental results show that the use of amine-terminated phospholipids not only improves the dispersity of multiwalled carbon nanotubes in both aqueous and organic solvents greatly, but also results in the significant enhancement of biocompatibility. These findings will serve as a future biological platform for new devices ranging from biosensors to nano-detectors. 相似文献
2.
Multiwall carbon nanotubes (MWCNTs) were functionalized with a photosensitizer, rosebengal (RB), and folicacid (FA), an anti-cancer
drug simultaneously and individually, which was characterized with various analytical instruments like Fourier Transform Iinfrared
(FTIR) spectroscopy, UV–Vis spectroscopy, Thermogravimetric analysis (TGA), Photoluminescence (PL) spectroscopy, X-ray photoelectron
spectroscopy (XPS), and Transmission electron microscopy (TEM). FTIR spectra confirmed the chemical modification of MWCNT.
The chemical functionalization of MWCNT with RB was further supported by UV–Vis and PL spectra. 相似文献
3.
Synthesis and characterization of carbon nanoribbons and single crystal iron filled carbon nanotubes
Carbon nanoribbons and single crystal iron filled multiwall carbon nanotubes (MWCNTs) have been synthesized by simple pyrolysis technique. SEM investigation shows that the material consist mainly carbon nanoribbons and carbon nanotubes (CNTs). X-ray diffraction (XRD), electron energy loss spectroscopy (EELS), electron energy dispersive X-ray (EDX), transmission electron miscroscopy (TEM) and highresolution transmission electron miscroscopy (HRTEM) studies reveal carbon nanotubes are filled with α-Fe. Closer inspection of HRTEM images indicated that the bcc structure α-Fe nanowires are monocrystalline and Fe (1 1 0) plane is indeed perpendicular to the G (0 0 2) plane, whereas orientation of (0 0 2) lattice planes of carbon nanoribbon is perpendicular to the axis of growth. Magnetic properties studied by superconducting quantum interference device (SQUID) at 300 K and 10 K exhibited coercivity of 1037 Oe and 2023 Oe. The large coercitivity is strongly attributed to the small size monocrystalline single phase α-Fe, single domain nature of the encapsulated Fe crystal, magnetocrystalline shape anisotropy and ferromagnetic behaviour of localized states at the edges of the carbon nanoribbons. 相似文献
4.
Polyurethane (PU)-grafted carbon nanotubes were synthesized by the coupling of alkyne moiety decorated single walled carbon nanotube (SWCNT) with azide moiety containing PU using Cu(I) catalyzed Huisgen [3 + 2] cycloaddition click chemistry. The azide moiety containing poly(s-caprolactone)diol was synthesized by ring-opening polymerization and further used for PU synthesis. Alkyne-functionalizion of SWCNT was completed by the reaction of p-aminophenyl propargyl ether with SWCNT using a solvent free diazotization procedure. Nuclear magnetic resonance, Fourier transform infrared, and Raman spectroscopic measurements confirmed the functionalization of SWCNT. Scanning electron microscopy and transmission electron microscopy images showed an excellent dispersion of SWCNTs, and specially debundling of SWCNTs could be observed due to polymer assisted dispersion. A quantitative grafting was successfully achieved even at high content of functional groups. 相似文献
5.
Alexandra Destrée Gary J. Long Benjamin Vatovez Fernande Grandjean Antonio Fonseca Janos B. Nagy A.-M. Fransolet 《Journal of Materials Science》2007,42(20):8671-8689
Multiwall carbon nanotubes have been grown on montmorillonite clay catalysts through anchoring on FeCo nanoparticles. The starting clay is a commercial sodium-rich montmorillonite in which the intercalated sodium ion was exchanged for cobalt(II) and iron(III) ions via mechanical agitation or sonication, both with and without subsequent centrifugation. The cobalt-iron intercalate clay was used as a catalyst for the synthesis of carbon nanotubes via decomposition of ethylene at 700 °C. The largest carbon deposit was obtained for catalysts prepared with 3 or 4 cation exchange equivalents. X-ray diffraction indicates both that the basal spacing of the clay increases from 12.43 Å to 16.4 Å upon intercalation of cobalt and iron. Atomic absorption analysis of the catalysts indicates that virtually all of the sodium ions originally present in the clay have been replaced by iron(III) and cobalt(II). Transmission electron micrographs show the presence of multiwall carbon nanotubes with inner and outer diameters of ca. 10 nm and 20 nm grown on metal particles present on the plates of catalysts. The iron-57 Mössbauer spectra indicate that the intercalated clay contains iron(III) in octahedral and tetrahedral sites and iron(II) in octahedral sites, the catalysts contain an extensive amount of small superparamagnetic particles of α-Fe2O3 and that the carbon-nanotube catalyst composites show the presence of iron(II) and iron(III) paramagnetic doublets, characteristic of a reduced montmorillonite, and of sextets that are characteristic of an FeCo alloy and of Fe3C cementite. The Mössbauer spectra indicate that the carbon nanotubes grow on FeCo metallic nanoparticles and bond to these particles through the formation of cementite. 相似文献
6.
R. Kozhuharova M. Ritschel D. Elefant A. Graff A. Leonhardt I. Mönch T. Mühl C. M. Schneider 《Journal of Materials Science: Materials in Electronics》2003,14(10-12):789-791
We describe the preparation and the properties of Fe-filled multi-walled carbon nanotubes on Co-coated oxidized silicon substrates. The material was grown by pyrolysis of ferrocene, using a chemical vapor deposition process. Scanning and transmission electron microscopy studies indicate that the material consists of filled and aligned MWNTs. They have outer diameters of 40–100 nm and diameters of the metal core of 20–40 nm. Energy dispersive X-ray analysis of individual tubes reveals that their filling consists of pure Fe. Alternating gradient magnetometry investigations demonstrate the ferromagnetic behavior of the filled tubes. We observe unique magnetic properties differing from those of bulk Fe. 相似文献
7.
Awasthi K Srivastava A Srivastava ON 《Journal of nanoscience and nanotechnology》2005,5(10):1616-1636
Carbon nanotubes play a fundamental role in the rapidly developing field of nanoscience and nanotechnology because of their unique properties and high potential for applications. In this article, the different synthesis methods of carbon nanotubes (both multi-walled and single-walled) are reviewed. From the industrial point of view, the chemical vapor deposition method has shown advantages over laser vaporization and electric arc discharge methods. This article also presents recent work in the controlled synthesis of carbon nanotubes with ordered architectures. Special carbon nanotube configurations, such as nanocoils, nanohorns, bamboo-shaped and carbon cylinder made up from carbon nanotubes are also discussed. 相似文献
8.
Lanlan Yang Mei Li Yunqiang Zhang Kaihua Yi Jingyun Ma Yingkai Liu 《Journal of Materials Science: Materials in Electronics》2014,25(2):1047-1052
Novel polypyrrole nanotubes/multi-walled carbon nanotubes (PPyNTs/MWCNTs) composites have been successfully synthesized via in situ chemical oxidation polymerization with methyl orange as soft template. Scanning electron microscopy and transmission electron microscopy images revealed that MWCNTs intertwined with the PPyNTs and PPyNTs/MWCNTs composites formed in water–ethanol solution. The obtained composites exhibited perfect electrochemical characteristic compared with PPyNTs and MWCNTs owing to the synergetic effect and the specific capacitance of the composites was strongly influenced by the mass ratio of pyrrole to MWCNTs. According to the galvanostatic charge/discharge analysis, the specific capacitance of PPyNTs/MWCNTs composites is up to 352 F g?1 at a current density of 0.2 A g?1 in 1 M KCl solution, much higher than that of the PPyNTs (178 F g?1) and MWCNT (46 F g?1), suggesting its potential application in supercapacitors. 相似文献
9.
Cyclodextrin polyurethanes polymerized with multi-walled carbon nanotubes: Synthesis and characterization 总被引:1,自引:0,他引:1
K.L. Salipira R.W. Krause B.B. Mamba T.J. Malefetse L.M. Cele S.H. Durbach 《Materials Chemistry and Physics》2008,111(2-3):218-224
Insoluble cyclodextrin polymers co-polymerized with multi-walled carbon nanotubes were synthesized by polymerizing β-cyclodextrin with acid-functionalized multi-walled carbon nanotubes and diisocyanate linkers; hexamethylene- and toluene-2,4-diisocyanate. The polymers are useful in removing some organic pollutants from water, and we now report the full characterization of these polymers using infrared spectroscopy (IR), Raman spectroscopy, scanning and transmission electron microscopy (SEM and TEM) and thermal techniques such as thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC).The polymers could be synthesized as either powders or amorphous solids. Results of the IR analysis showed the presence of functional groups such as CO, CC, CH and CO, indicating that polymerization indeed took place. Characterization of the polymers by scanning electron microscopy and BET analysis showed that these polymers had a spongy appearance indicating a hierarchical pore structure. Incorporation of small amounts (<5%) of multi-walled nanotubes (MWNTs) improved the thermal stability of the polymers. This observation was further confirmed by differential scanning calorimetry (DSC) measurements. 相似文献
10.
I. Yu. Gotlib A. K. Ivanov-Shitz I. V. Murin A. V. Petrov R. M. Zakalyukin 《Inorganic Materials》2010,46(12):1375-1383
Nanostructures resulting from the incorporation of silver iodide into single-wall carbon nanotubes (SWCNTs) of various diameters have been studied using molecular dynamics simulation. The results indicate the formation of single-wall silver iodide nanotubes when the SWCNT diameter is within 14.2 Å, whereas thicker carbon tubes contain, in addition, an axial “filament” of silver and iodide ions. AgI nanotubes in SWCNTs typically have a hexagonal structure (with the ions in trigonal coordination). 相似文献
11.
S. Neupane G. Kaganas R. Valenzuela L. Kumari X. W. Wang W. Z. Li 《Journal of Materials Science》2011,46(14):4803-4811
We report the synthesis of ruthenium dioxide (RuO2) nanostructures by thermal evaporation of RuO2 powder. RuO2 nanostructures of different shapes were synthesized at various concentration, flow rate, and pressure of oxygen. At a constant pressure of 3 torr of flowing oxygen, polygonal prism-like RuO2 nanorods with flat tips were grown at an O2 flow rate of 100 sccm; club-shaped nanorods with obelisk tip were formed at 300 and 600 sccm, and hollow rods with square tip were formed at 1800 sccm. A mixture of O2 and Ar at a total flow rate of 600 sccm led to the formation of short club-shaped nanorods indicating the suppression effect of Ar on the growth of nanorods. The pressure also had a significant effect on the formation of RuO2 nanostructures, at a fixed flow rate of 600 sccm of O2, a pressure of 3 torr resulted in the growth of club-shaped RuO2 nanorods, while high pressures of 380 and 760 torr resulted in the formation of both linear club-shaped and pine tree-like hierarchical RuO2 nanorods. X-ray diffraction and transmission electron microscopy analysis indicated the formation of tetragonal phase of RuO2 with high crystallinity. A density functional calculation on RuO2, RuO3, and RuO4 was performed to help to explain the experimental results. 相似文献
12.
Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal 总被引:10,自引:0,他引:10
Alumina-coated multi-wall carbon nanotubes were synthesized and characterized by scanning electron microscopy, X-ray diffraction, and FTIR. They were used as an adsorbent for the removal of lead ions from aqueous solutions in two modes, batch and fixed bed. In the batch mode, experiments were carried out to investigate the effect of contact time, agitation speed, adsorbent dosage and solution pH on the removal of lead. The coated nanotubes exhibit better removal ability over uncoated. For fixed-bed columns, thickness of the layer and flow rate were investigated. Increasing the thickness and decreasing the flow rate enhanced the removal of lead. The prepared adsorbent displayed the main advantage of separation convenience when a fixed-bed column was used compared to the batch adsorption treatment. 相似文献
13.
Magnesium oxide (MgO) nanowire arrays, nanoribbons, two- and three-dimensional network like nanostructures were prepared by the simple thermal evaporation of Mg powder with and without using catalyst at a relatively low temperature. The non-catalytic approaches favor the formation of network like nanoforms whereas the catalytic approaches favors the formation of one-dimensional nanowire arrays and quasi one-dimensional nanoribbons depending on the temperature and vapor concentrations of the growth site. The diameter and length of the MgO network like columns varied within 40-50 nm and approximately 200 nm respectively. The MgO nanowires produced by the catalytic approach had diameter within 20-30 nm and length approximately 2 microm. Whereas the widths of the nanoribbons varied within 50-100 nm and their length were of the order of a few hundred micrometers. The nanoforms were single crystalline and cubic in phase. The products were characterized by the X-ray diffraction study, energy dispersive analysis of X-ray study, scanning and transmission electron microscopy, and photoluminescence measurements to explore the structural, compositional, morphological, and physical properties of the MgO nanoforms. 相似文献
14.
Gurpreet Singh Shashank Priya Maria R. Hossu Sachit Grover Roop L. Mahajan 《Materials Letters》2009,63(28):2435-2438
We demonstrate synthesis, electrical and magnetic characterization of silicon carbo-nitride (SiCN) coated multiwalled carbon nanotubes in a core-shell structure. The core formed by a carbon nanotube had a diameter in the range of 10-100 nm. The shell was synthesized by pyrolysis of an SiCN precursor on the surface of carbon nanotubes. Electrical resistivity of an individual composite nanotube was measured to be ~ 2.55 × 103 Ω cm. The magnetic measurements performed by a superconducting quantum interference device on the composite nanotubes in the temperature range of 5-300 K show a reduced coercive field with increasing temperatures. The monolayer thick coating of an ultra high temperature multifunctional ceramic SiCN makes these composite nanotubes very promising for sensing applications in harsh environments. 相似文献
15.
Water-soluble multiwalled carbon nanotubes (MWNTs) with temperature-responsive shells were successfully prepared by grafting poly (N-isopropylacrylamide) (PNIPAM) from the sidewalls of MWNTs, via surface reversible addition-fragmentation chain transfer (RAFT) polymerization using RAFT agent functionalized MWNTs as the chain transfer agent. Thermogravimetric analysis (TGA) measurements showed that the weight composition of the as-grown PNIPAM polymers on the MWNTs can be well controlled by the feed ratio (in weight) of NIPAM to RAFT agent functionalized MWNTs (MWNT-SC(S)Ph). The MWNT-g-PNIPAM has good solubility in water, chloroform, and tetrahydrofuran (THF). Transmission electron microscope (TEM) and scanning electron microscope (SEM) images also showed that the MWNT-g-PNIPAM was dispersed individually and eventually bonded with the polymer layer by surface RAFT polymerization. The PNIPAM shell is very sensitive to a change of temperature. This method could find potential applications by grafting other functional polymer chains onto MWNTs. 相似文献
16.
Synthesis and characterization of HCl doped polyaniline grafted multi-walled carbon nanotubes core-shell nano-composite 总被引:1,自引:0,他引:1
Jun Xu Pei Yao Yanxia Wang Fei He Yao Wu 《Journal of Materials Science: Materials in Electronics》2009,20(6):517-527
Multi-walled carbon nanotubes (MWNTs) was modified with p-phenylenediamine (p-PDA) and hydrochloric acid (HCl) doped polyaniline (PANI) grafted MWNTs nano-composite was synthesized by in situ oxidation
polymerization. Raman spectra, XPS, TEM and XRD reveal that modification does not decrease the integrity of outer graphite
sheets in p-PDA modified MWNTs (p-MWNTs) excessively and results in phenylamine groups with concentration of 3.7% covalently grafted on the surface of p-MWNTs via amide bond. Oxidized phenylamine groups initiate polymerization and contribute to the formation of inner layer
of PANI coatings. As self-assembly templates, p-MWNTs are encapsulated by PANI forming a homogeneous core (p-MWNTs)-shell (HCl doped PANI) nano-structure with controlled organization. In earlier reaction period, polymer chains are
highly ordered and microcrystalline domains are enriched in the inner PANI layers. When deposition of PANI chains under less
restriction, more amorphous parts are distributed in the outer layers of PANI coatings. TGA and conductivity data reveal that
although chemical modification affects the performance of p-MWNTs, thermal stability and electronic conductivity at room temperature of HCl doped PANI grafted MWNTs nano-composite are
highly improved owing to incorporation of p-MWNTs and covalent bindings between PANI and carbon nanotubes. 相似文献
17.
采用电弧放电法在氦气/乙炔混合气氛中,在不同压力下合成了碳纳米管.运用场发射扫描电镜、场发射透射电镜、X-射线衍射仪和拉曼光谱对碳纳米管的形貌进行了表征.采用可见发射光谱对碳纳米管的形成过程进行了原位诊断研究.场发射扫描电镜结果表明,在氦气/乙炔气氛中合成的碳纳米管的长度大于50微米,许多碳颗粒沉积在碳纳米管壁上.场发射透射电镜结果表明,在0.100MPa下合成的碳纳米管的壁厚明显大于0.035MPa下合成的碳纳米管的壁厚.可见发射光谱诊断结果表明,CH和C2物种可能作为碳纳米管形成的前驱体,其中,以H原子作为无定形炭的刻蚀物种.阳极消耗速率和产物在阴极的沉积速率随着反应器中压力的增加而增加.因此,可以通过加强阳极和乙炔的蒸发速率及CH和C2物种的沉积速率而增加碳纳米管的形成速率. 相似文献
18.
Ishwor Khatri Naoki Kishi Tetsuo Soga Sudip Adhikari Masayoshi Umeno 《Thin solid films》2010,518(23):6756-15884
Ultrasonic spray pyrolysis method for the synthesis of carbon nanotubes (CNTs) has been investigated with zeolite supporting material. Single wall carbon nanotubes (SWCNTs) were obtained at 850 °C in nitrogen environment. Such deposition system makes it possible to grow CNTs without reducing agent at atmospheric pressure in a simple setup. Iron and cobalt acetate were used as catalyst and ethanol as carbon source for the synthesis of CNTs. Results show that nature of zeolite and cobalt concentration play important roles for SWCNTs production. Interestingly, we notice that in catalyst particles of sharp shape, nucleation of a nanotubes cap occurs dominantly in the forward direction. 相似文献
19.
León J Flacker A Vaz AR Veríssimo C de Moraes MB Moshkalev SA 《Journal of nanoscience and nanotechnology》2010,10(9):6234-6239
Electrical characteristics of multi-walled carbon nanotubes (MWNTs) grown by chemical vapor deposition have been investigated as a function of the bias voltage, nanotubes length and temperature, in 2 and 4 terminal configurations. Nanotubes were deposited over metal electrodes using ac dielectrophoresis method. For better contacts between the nanotubes and electrodes, Ni and Pd films were deposited by an electroless deposition technique. Differential conductance was found to rise considerably with bias, and this effect was more pronounced for Ni. Using 2 and 4 terminal configurations, electrical resistance measurements for individual MWNTs were performed, and the results were interpreted using the model of nanotube as a resistive transmission line, where current at low bias flows mainly through the two outermost shells. 相似文献
20.
Carbon nanotubes were electrodeposited in acetonitrile solution at room temperature using Cu, and Fe-Ni nanoparticles as nucleation sites on HF-etched Si(100) wafer substrate. The electrochemical behavior of the deposition was investigated by voltammetry and chronoamperometry techniques. In order to obtain the optimum growth condition, the deposition critical parameters including current density range, potential and time were studied and calculated. Carbon nanotubes with approximate external diameter of 40-100 nm were fabricated under potentiostatic condition and diffusion control at − 20 V in 4-6 h. The film crystallinity was investigated by means of X-ray diffraction and the tubes structure was revealed using scanning electron microscope and transmission electron microscope images. Raman spectroscopy was also employed to characterize the nanostructural features and single wall carbon nanotubes were detected. 相似文献