首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recently discovered superconductor MgB2 with T c at 39 K has great potential in superconducting electronics. In this paper, we review the deposition techniques used for MgB2 thin films in the light of a thermodynamic study of the Mg-B system with the calculation of phase diagrams (CALPHAD) modeling technique. This thermodynamic study identifies a growth window in the pressure–temperature phase diagram, in which the magnesium pressure is very high for likely in situ growth temperatures. A Hybrid Physical–Chemical Vapor Deposition (HPCVD) technique that successfully achieves such a high Mg pressure is shown to produce in situ epitaxial MgB2 thin films with bulk superconducting properties.  相似文献   

2.
The recently discovered superconductor MgB2 with T c at 39 K has great potential in superconducting electronics. In this paper, we review the deposition techniques used for MgB2 thin films in the light of a thermodynamic study of the Mg-B system with the calculation of phase diagrams (CALPHAD) modeling technique. This thermodynamic study identifies a growth window in the pressure–temperature phase diagram, in which the magnesium pressure is very high for likely in situ growth temperatures. A Hybrid Physical–Chemical Vapor Deposition (HPCVD) technique that successfully achieves such a high Mg pressure is shown to produce in situ epitaxial MgB2 thin films with bulk superconducting properties.  相似文献   

3.
The superconducting properties of magnesium diboride (MgB2) films prepared by electroless deposition on various substrates including silver, gold and silicon are reported. In this study, MgB2 films were fabricated on silver, gold, and silicon using an electroless plating technique, while controlling the redox potential to improve the deposition quality. The structure, morphology, and superconducting properties of the samples were investigated using X-ray diffraction, magnetometry, scanning electron microscopy, and Raman spectroscopy. X-ray diffraction and Raman spectroscopy confirmed that the films are polycrystalline MgB2 but also contain some impurity phases. All the MgB2 films show superconducting transitions near 39 K, the value for bulk MgB2, with the superconducting volume fraction ranging from approximately 1 to 2%. We find a strong dependence of film quality with the oxidation potential of the bath.  相似文献   

4.
We hereby report on the role of the surface morphology of various substrates in the enhancement of the superconducting critical temperature of MgB2. MgB2 thin layers were grown by hybrid physical–chemical vapour deposition on silicon carbide SiC substrates/fibers and several other substrates, characterized by diverse surface morphologies. By investigating the structural, morphological and transport properties of MgB2 thin layers, the presented data show that the superconducting critical temperature T c exceeds the bulk value only when the MgB2 films are grown on atomically flat (0001) SiC single crystals and on MgB2 bottom layers. These results further confirm the interpretation of the coalescence-driven tensile strain mechanism behind the enhancement of superconducting properties in MgB2 thin films.  相似文献   

5.
Magnesium diboride is a promising material for superconducting RF (SRF) cavity applications. Compared to the currently used superconductor for SRF cavities Nb, MgB2 has the potential to achieve lower RF loss and higher acceleration field due to its higher critical temperature and thermodynamic critical magnetic field. Since the RF field only penetrates a few penetration depths into a superconductor, a superconducting coating of several hundred nanometers on a metal cavity is sufficient for superb SRF cavity performances. In this work, we report the properties of MgB2 thin films deposited by the hybrid physical–chemical vapor deposition (HPCVD) technique on different metal substrates including Nb, Mo, Ta, and stainless steel. All the films were polycrystalline, as indicated by X-ray diffractometry and scanning electron microscopy, and showed T c ~39 K, determined by resistance versus temperature, magnetic susceptibility, and dielectric resonator measurements. MgB2 films deposited on Nb substrates polished to various degrees of smoothness exhibit similar T c . The result is a promising step in the investigation of using MgB2 as an alternative to Nb for SRF cavities.  相似文献   

6.
We fabricated superconducting MgB2 thin films on (001) MgO substrates by magnetron rf and dc co-sputtering on heated substrates. We annealed the samples ex-situ and in-situ at temperatures between 450 °C and 750 °C. The substrate temperature during the sputtering process and the post annealing temperatures play a crucial role in forming MgB2 superconducting thin films. We achieved a critical onset temperature of up to 27.1 K for the ex-situ and 25.6 K for the in-situ annealed samples at a film thickness of 30 nm. The samples shows an out of plane (0002)-Peak which was determined by x-ray diffraction.  相似文献   

7.
We have studied the influence of crystalline SiC buffer layers on the critical current density and on the flux pinning mechanism in MgB2 thin films. Crystalline SiC buffer layers were deposited on the Al2O3 (0001) substrates by using a pulsed laser deposition method, and then MgB2 thin films were grown on the SiC-buffered layer by using a hybrid physical-chemical vapor deposition technique. MgB2 thin films with crystalline SiC-buffered layers showed a significant critical current density’s enhancement in the high magnetic field region. An uncommon plateau-like behavior was also observed when the normalized flux pinning force density was scaled with the reduced magnetic field. Based on the analyses of the scaling behavior of the flux pinning force, grain boundary pinning is likely to be a dominant pinning mechanism in the SiC-buffered MgB2 thin films.  相似文献   

8.
Surface morphology and superconducting properties of MgB2 superconducting thin films prepared by ex-situ annealing of multilayer Mg/B precursors in Mg vapor are studied.Depending on the precursor structure different physical and microstructural properties of the superconductor evolve. Structure and composition of the films are analyzed by scanning electron microscopy and wavelength dispersive x-ray spectroscopy. It is found that certain precursor structures can lead to high quality superconducting films, however, in specific precursor structures mechanical stress leads to the formation of wrinkles strongly affecting the superconducting homogeneity of the films. A correlation between microstructure and superconducting properties, such as pinning or critical current density, can be provided via magneto-optical Faraday microscopy.  相似文献   

9.
In this study, we report spray pyrolysis deposition using an alternative precursor solution for the fabrication of MgB2 films. Polycrystalline MgB2 films were prepared by spray pyrolysis, a precursor solution of magnesium diboride nanoparticles, sodium hypophosphite, sodium succinate, sodium acetate and dimethyl sulfoxide on AZ91 magnesium alloys. The spray was carried out using argon as carrier gas at a temperature of 150 °C and a spray rate of 5 ml/min for 60 min. After spraying, the deposited samples were annealed at 300 °C for 15, 30 and 45 min in order to investigate morphological changes and crystallization behaviour. The microstructure, hardness and wettability properties of approximately 30 μm coatings were investigated by X‐ray diffraction, scanning electron microscopy, microhardness tester and contact angle meter. Produced coatings showed dense and homogenous structural formation with strong grain connections. As‐deposited MgB2 films showed the most pronounced preferred orientation with the (101) reflection and the highest hardness value compared to other annealed coatings at different times. Besides, all the synthesized coatings had a super‐hydrophilic surface.  相似文献   

10.
Synthesis and optical transmission of MgB2 thin films on optically transparent glass are reported. In the 400–1000 nm regime as deposited films show high metallic reflectivity and very little transmission. After deposition, the films were annealed ex situ and rendered superconducting with T c of 38 K, approaching that of the bulk material. The reaction conditions where quite soft ∼10 min at 550°C. The optical absorption coefficient, α and photon energy, E followed a Tauc-type behavior, = _T (E - E_g )(\alpha E)^{1/2} = \beta _T (E - E_{\rm g} ). The band gap (E g) was observed to peak at 2.5 eV; but, the slope parameter β T behaved monotonically with reaction temperature. Our results indicate that an intermediate semiconducting phase is produced before the formation of the superconducting phase; also optical measurements provide valuable information in monitoring the synthesis of MgB2 from its metallic constituents. In addition these films have interesting optical properties that may be integrated into optoelectronics.  相似文献   

11.
The superconducting neutron detector using high-quality 10B-enriched MgB2 thin films at higher operating temperatures has been proposed, where a resistance change induced by the nuclear reaction of neutron and 10B in MgB2 is used to detect a neutron. Cold neutrons from a nuclear research reactor irradiated the MgB2 detector, and the output voltage was clearly observed through a low-noise amplifier by using a digital oscilloscope. The out-of-equilibrium thermodynamics was investigated by means of the time-dependent Ginzburg-Landau equations by using the Earth Simulator.   相似文献   

12.
Since the discovery of superconductivity in the tempting binary intermetallic compound MgB2, the solid-state synthesis technique is highly dominated by the usage of amorphous boron as one of the precursor powders. The formation of MgB2 phase proceeds through the diffusion of Mg into B powder mainly driven by the low melting point of Mg as compared to B. Once the nucleation is achieved, the progress of polycrystalline MgB2 phase occurs due to the out diffusion of boron through the MgB2 layer and by the inward diffusion of Mg. This growth is impeded due to the presence of certain oxide phases or formation of Mg deficient phases. It is speculated that the probability for the inclusion of Mg(B)–O phases is higher for crystalline boron precursor as compared to the amorphous B. Thus, the use of nanosized amorphous boron may lead to larger nucleation centers, smaller grain size and consequently higher packing density in the polycrystalline MgB2, which will in turn provide optimum superconducting properties. Hence an attempt to synthesize amorphous nano-boron powders is presented. Plasma arc discharge technique was successfully employed to produce nano-boron powder. The XPS analysis was carried out to inveterate the formation of boron. The as-synthesized powder had a uniform average particle size distribution of around 20 nm as confirmed by TEM measurements. The selected area electron diffraction pattern composed of diffused ring clearly depicts the amorphous nature of boron powder.  相似文献   

13.
MgB2 thin films were fabricated on MgO (100) single crystal substrates. First, deposition of boron was performed by rf magnetron sputtering on MgO substrates and followed by a post deposition annealing at 850?°C in magnesium vapor. In order to investigate the effect of FeO nanoparticles on magnetic properties of MgB2 thin films, the films were coated with different concentrations of FeO nanoparticles by spin coating process. The magnetic field dependence of the critical current density $J_{\mathrm{c}}$ was calculated from the M?CH loops and also magnetic field dependence of the pinning force density $f_{\mathrm{p}}(b)$ was determined for the films containing different concentrations of FeO nanoparticles. The values of the critical current density $J_{\mathrm{c}}$ in zero field at 5?K was found to be around 1×106?A/cm2 for pure MgB2 film, 1.4×106 for MgB2 film coated with 25?%, 7.2×105 for MgB2 film coated with 33?%, 9.1×105 for MgB2 film coated with 50?% and 1.1×106?A/cm2 for MgB2 film coated with 100?%. It?was?found that the film coated with 25?% FeO nanoparticles has slightly enhanced critical current density and it can be noted that especially the film coated with 25?% FeO became stronger in the magnetic field. The films coated with FeO were successfully produced and they indicated the presence of artificial pinning centers created by FeO nanoparticles. The superconducting transition temperature of the film coated with 25?% FeO nanoparticles was determined by moment?Ctemperature (M?CT) measurement to be 34?K which is 4?K higher than that of the pure film.  相似文献   

14.
Synthesis and optical transmission of MgB2 thin films on optically transparent glass are reported. In the 400–1000 nm regime as deposited films show high metallic reflectivity and very little transmission. After deposition, the films were annealedex situ and rendered superconducting withT c of 38 K, approaching that of the bulk material. The reaction conditions where quite soft ∼ 10 min at 550°C. The optical absorption coefficient,α and photon energy,E followed a Tauc-type behavior, (αE)1/2=β T(EE g). The band gap (E g) was observed to peak at 2.5 eV; but, the slope parameterβ Tbehaved monotonically with reaction temperature. Our results indicate that an intermediate semiconducting phase is produced before the formation of the superconducting phase; also optical measurements provide valuable information in monitoring the synthesis of MgB2 from its metallic constituents. In addition these films have interesting optical properties that may be integrated into optoelectronics.  相似文献   

15.
We report a simple method for the fabrication of reproducible, clean, and stable MgB2 superconducting tips. The quality of these tips has been verified by imaging the surface of a thin Au(111) film sample, using a low temperature scanning tunneling microscopy (STM). Using the MgB2 superconducting tip, high-quality semiatomically resolved STM surface images of the thin Au(111) film sample have been observed, which unambiguously indicates that the fabrication of relatively superconducting MgB2, suitable for use as STM tips, is feasible.  相似文献   

16.
We report a simple method for the fabrication of reproducible, clean, and stable MgB2 superconducting tips. The quality of these tips has been verified by imaging the surface of a thin Au(111) film sample, using a low temperature scanning tunneling microscopy (STM). Using the MgB2 superconducting tip, high-quality semiatomically resolved STM surface images of the thin Au(111) film sample have been observed, which unambiguously indicates that the fabrication of relatively superconducting MgB2, suitable for use as STM tips, is feasible.  相似文献   

17.
The electrodynamic response at 20 GHz of c-axis oriented MgB2 superconducting thin films is reported. Mg-rich Mg-B precursor samples were grown on MgO and Al2O3 single crystal substrates by a d.c. planar magnetron sputtering technique, and subsequently annealed in situ at 800°C for 10 min in a In-sealed Nb box in the presence of saturated Mg vapor. The films were characterized by a variety of structural and electronic techniques including XRD, EDS, STM-AFM analyses, and transport measurements. The dependence of the surface impedance from temperature and radiofrequency (r.f.) field amplitude was measured via a dielectric resonator technique. Temperature data clearly confirm the s-wave nature of the newly discovered superconductor, even if the value of the energy gap is smaller than BCS prediction. An effective two-band model can be applied to quantitatively explain the experimental results. In spite of previous reports claiming the absence of weak link behavior in MgB2, the power dependence show that granularity governs the performance of these films in the microwave region.  相似文献   

18.
The electrodynamic response at 20 GHz of c-axis oriented MgB2 superconducting thin films is reported. Mg-rich Mg-B precursor samples were grown on MgO and Al2O3 single crystal substrates by a d.c. planar magnetron sputtering technique, and subsequently annealed in situ at 800°C for 10 min in a In-sealed Nb box in the presence of saturated Mg vapor. The films were characterized by a variety of structural and electronic techniques including XRD, EDS, STM-AFM analyses, and transport measurements. The dependence of the surface impedance from temperature and radiofrequency (r.f.) field amplitude was measured via a dielectric resonator technique. Temperature data clearly confirm the s-wave nature of the newly discovered superconductor, even if the value of the energy gap is smaller than BCS prediction. An effective two-band model can be applied to quantitatively explain the experimental results. In spite of previous reports claiming the absence of weak link behavior in MgB2, the power dependence show that granularity governs the performance of these films in the microwave region.  相似文献   

19.
The preparation of dense MgB2 bodies, undoped and doped with different atomic species (Na, Ag, Y), was performed via reactive sintering by uniaxial and isostatic hot pressing, starting from the pure elements, and compared with undoped samples obtained by commercial MgB2 powder. The superconducting characteristics of the obtained materials, namely critical temperature (Tc) and current (Jc), were obtained through ac susceptibility measurements and compared to their structural features, like phase purity and secondary phases formation and distribution in the MgB2 matrix. Both the adopted hot pressing techniques gave rise to undoped MgB2 pieces exhibiting phase purity in the range 85–95% and relative density above 80%; although in most cases the doped samples underwent higher extents of phase decomposition and lesser densification, they all exhibited higher critical temperature and current compared to the corresponding undoped material, indicating a net influence of the doping on the superconducting behaviour of MgB2, particularly Ag and Y. An opportune quality factor was adopted, to obtain a more reliable comparison between the different MgB2 samples and evaluation of the samples goodness, in relation to their superconducting characteristics. It was put in evidence that low amounts of doping can improve the superconducting behaviour of MgB2 and that this influence can be addressed in terms of pinning centres, as there was no experimental evidence of an actual atomic substitutions in the MgB2 crystal.  相似文献   

20.
We report on the measurements of transport and magnetic properties of MgB2 thin films obtained using ion implantation technique followed by irradiation with high intensity pulsed plasma beams. To get detailed information about the process of current percolation in a superconducting phase, about current transport and size of the current loop, we used the method of reverse leg of magnetisation loop. On the basis of this method we have found that the technique of implantation allowed one to obtain a continuous layer of MgB2 superconductor characterized by the critical current density of Jc = 1.25 × 105 A/cm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号