首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
研究了高速列车在明线交会时产生的瞬态压力波以及气动作用力将会对列车的运行安全产生不利影响.采用三维、非定常、可压缩流体控制方程和双方程湍流模型的数值方法,基于重叠网格法对时速300km高速列车明线交会的压力波进行研究.研究结果表明:重叠网格法能够解决高速列车明线交会的压力波变化问题,主区域网格与从属区域的动网格数据传输准确;高速列车相距70m,0.42s时列车进入交会,此时出现车头鼻尖处交会压力波“头波”,车头鼻尖处所受压力达到最大;0.95s列车车头行驶到通过列车的车尾处,两车纵向重合,出现“尾波”.  相似文献   

2.
高速列车在隧道运行、隧道交会时车内、外会产生交替变化的气压差,对车体气密性及材料耐疲劳强度提出更高要求.基于Matlab和AMESim构建联合仿真平台,设计高速列车隧道压力波模拟系统.使用实测隧道压力波数据作为期望输出,研究车体气密疲劳性能.考虑到模拟系统非线性、大时滞及多扰动特点,采用一种带有时变遗忘因子的开环迭代PID控制算法.仿真结果表明,其系统更稳定、收敛速度更快.  相似文献   

3.
底部导流板形式对高速列车气动阻力的影响   总被引:1,自引:0,他引:1  
为减小高速列车运行时的气动阻力,设计直式、斜式、内圆弧式和外圆弧式等4种转向架前后底部导流板的高速列车模型.通过风洞试验验证数值模拟方法的有效性,采用数值计算分析底部导流板对列车气动阻力和底部流场的影响.结果表明:不同形式底部导流板的列车总阻力相差可达20%,其中头车气动阻力因数极差值最大为0.062.导流板影响列车底部气流速度和转向架区域压力分布,其导流作用使得转向架区域气动阻力和转向架的阻力同时改变.转向架前后导流板的导流效果越好,转向架区域的气动阻力越小;同时,气流冲击使得转向架上的滞止压力增大;在二者的共同作用下高速列车的总阻力存在一个较小值.底部采用直式导流板对降低全车气动阻力的效果最好.  相似文献   

4.
裙板安装对高速列车气动性能影响的数值分析   总被引:2,自引:0,他引:2  
为研究裙板安装对高速列车气动阻力及侧风安全稳定性的影响,用计算流体力学(Computational Fluid Dynamics,CFD)方法分析国外某高速列车转向架及其周边裙板结构对整车气动性能的影响.在无侧风且列车行驶速度为350km/h时,模拟分析不安装裙板及在不同位置安装裙板情况下列车的气动性能;在有强侧风情况下,模拟分析列车在50~350km/h之间不同行驶速度工况时的气动性能.结果表明,列车底部安装裙板可有效降低列车气动阻力,在头尾第1对转向架处安装裙板对列车气动阻力的降低最有效;在强侧风下,列车底部安装裙板会造成列车的侧向力和侧翻力矩加大,降低列车行驶安全性.  相似文献   

5.
随着既有线路上普通快速列车和动车组运行速度的提高,会车时两车之间的气动压力会明显增大;因此,会车压力波给交会的普通快速列车和动车组造成的舒适性和安全性等影响明显加剧;采用基于雷诺时均法(RANS)的RNG k-e二方程的湍流模型仿真计算普通快速列车时速140 km与动车组时速200 km时,明线和隧道两种工况下会车过程的压力波动情况,并用计算得到的车窗处压力从车窗玻璃的静强度、车窗玻璃的动态冲击强度和车窗安装强度三个方面分析了交会过程的车窗安全性;结果表明:明线会车过程两车交会侧车窗受正压和负压的影响,隧道会车过程两车交会侧车窗主要受较大的负压的影响;受压缩波和膨胀波的叠加影响,交会压力波的头波波峰和尾波波谷的波动较小,而头波波谷和尾波波峰的波动较大;在隧道会车时,动车组车窗中心处的负压极值最大值约为明线会车的3.87倍,压力波幅值最大值和最大压力平均变化率较接近;普通快速列车车窗中心处的负压极值最大值约为明线会车的4.25倍,压力波幅值最大值和最大压力平均变化率相差较大;车窗的长宽比越大,安装结构强度越大,安装结构越宽,安装强度越大。  相似文献   

6.
高速列车在通过隧道或两车交会时,列车表面会产生很大的气压波动,此压力波动通过车体缝隙和换气风机、风道传入车内,引起车内空气压力较大波动,造成乘客耳鸣、耳痛等症状.影响乘坐舒适性;为了抑制高速列车车内压力波动,根据某型高速列车换气风机特性曲线与车体等效泄露关系,建立了换气风机频率可变的车内外空气压力传递数学模型;采用模糊控制策略,以车内压力、车内压力变化率为控制输入,对高速列车换气系统中的新风风机、废排风机运行频率进行调节;仿真结果表明:该控制方式能够提高现有换气系统对车内空气压力波动的抑制能力,提高乘坐舒适性。  相似文献   

7.
转向架蛇行运动稳定性直接决定高速列车能否安全和平稳运行,采用主动悬挂技术是提高稳定性的有效途径,但目前针对采用主动控制后的转向架蛇行运动Hopf分岔机理和稳定性演变规律的研究还十分缺乏.本文基于高速列车转向架摇头反馈控制下的蛇行运动Hopf分岔特性展开研究.建立包含转向架横移、摇头和车体横移的三自由度简化模型,采用作动器替代现有的抗蛇行减振器提供转向架摇头控制力矩.分别选取转向架摇头角位移和角速度作为状态反馈量,设计线性反馈控制器,并通过Matcont仿真环境实现Hopf 分岔和极限环计算.研究表明:对比被动悬挂的分岔特性,转向架摇头角位移和角速度两种主动控制方式均能延后蛇行运动Hopf分岔点,即提高系统线性临界速度;摇头角速度控制能降低蛇行运动频率和分岔后极限环幅值;摇头角位移控制会增大蛇行运动频率,而极限环幅值无明显改变.因此,通过引入转向架摇头控制并选取合适控制增益,能够有效提高高速转向架蛇行运动稳定性.  相似文献   

8.
宋烨  邬平波  贾璐 《计算机仿真》2015,32(2):194-199
随着列车运行速度的提高,气动载荷对强度的影响越来越显著。为加强列车气动载荷强度,根据高速列车在线路运行实际情况设置了四种气动载荷工况:明线会车,隧道通过,隧道会车和侧风。利用空气动力学原理计算得到四种气动载荷工况的数值,将得到的数值施加到高速列车车体有限元模型上,进行气动载荷的静强度和瞬态响应分析。计算分析结果表明,四种工况下的静强度结果都小于车体材料的允许用的应力,最大位移变形均发生在车体底部;利用Fluent软件仿真获得列车在空旷地带以380km/h速度交会的气动载荷时间历程,接着在ANSYS软件中对车体完成气动载荷瞬态响应分析,得到气动载荷对车体结构强度的影响,为车体强度优化设计提供了参考。  相似文献   

9.
为研究列车碰撞性能,用Adams创建由车体、车钩缓冲装置、端部吸能结构、防爬器、转向架和轮轨力等组成的单节车厢三维动力学模型,并创建6节车厢列车的三维动力学模型,模拟列车以15 m/s的速度与2节静止车厢碰撞的过程.通过分析各节车厢的速度、加速度和每个车钩缓冲装置的相对偏移量在碰撞过程中的变化情况,重现列车碰撞过程,进而分析影响列车垂向爬车和横向屈曲稳定性的因素.仿真结果表明,碰撞过程中每个车钩缓冲装置的相对偏移量和列车各节车厢的加速度最大值均沿列车运行向不断变小;列车前三节车厢的垂向爬车和横向屈曲最严重,转向架发生出轨现象.  相似文献   

10.
高速列车在隧道通过或明线交会时,列车表面会产生较大的气压波动,此压力波动通过车体传递到车内也会影响车内压力波动,加之运行速度的不断提高,可引起车体表面材料疲劳甚至断裂;为研究高速列车在复杂工况下车内、外压力波动对车体材料疲劳性能的影响,设计了一种能同时对车内及车外进行压力加载的试验系统;利用AMESIM与SIMULINK接口技术进行联合仿真平台的构建,并进行车内、外压力控制仿真;针对系统数学模型难以建立,且存在大容量、大时滞、非线性及多扰动等特点,采用基于前馈补偿的高阶非因果型迭代PI型控制算法实现车内及车外压力的精确控制;仿真结果表明该算法控制误差较PI型控制算法小,控制效果更理想。  相似文献   

11.
为研究横风下桥梁高度对高速列车会车性能的影响,基于空气动力学和列车系统动力学,分析指数风分布下不同高度桥梁周围的流场,建立高速列车多体系统动力学模型,模拟横风下列车在不同高度桥梁上会车时的表面压力特性和气动载荷特性.将得到的气动力作为外加载荷作用于列车上,分析桥梁高度对高速列车会车安全性能的影响.结果表明:当列车在环境风下交会时,背风侧列车的气动力波动大于迎风侧列车的气动力波动;当监测点风速固定且桥梁高度小于15 m时,随着桥梁高度的增加,列车的气动载荷最大幅值和安全指标最大幅值均有所减小;当桥梁高度为15~30 m时,随着桥梁高度的增加,列车的气动性能和动力学性能基本保持不变.  相似文献   

12.
高速列车车内低频气动噪声预测   总被引:1,自引:0,他引:1  
为研究气动载荷下高速列车的车内低频噪声,建立高速列车空气动力学模型,采用大涡模拟(Large Eddy Simulation,LES)法计算中间车的表面脉动压力.将脉动压力加载到高速列车的有限元模型上,通过瞬态分析得到车体的振动位移响应;将位移响应作为边界条件,采用边界元法(Boundary Element Method,BEM)分析车内噪声.结果表明:车窗振动位移最大,车顶和车底次之;中间车车厢的两端声压比中部大;在低频范围内,车厢内声压呈强弱交替分布,声场强弱界限较明显,且随着频率的增大,沿车体纵向和横向干涉条纹增多;车内低频气动噪声随速度二次方的增大而增加.  相似文献   

13.
为研究高速列车设备舱底板折边气动阻力及折边对底板刚度的影响,按实际折边分布情况对列车头部和底板进行几何建模,分析列车以350 km/h,380 km/h和430 km/h运行时列车头部底板折边的气动阻力;分析有、无折边情形下底板在相同竖向均布载荷和约束作用下的变形.结果表明,不同车速下底板折边的气动阻力分布相似,且随着车速的提高而增大;降低折边高度对满足列车轻量化要求、提高列车运行速度有积极贡献;折边对底板的刚度有较大的贡献.  相似文献   

14.
采用CFD方法,基于剪切应力输运(Shear Stress Transport,SST)湍流模型,求解大长细比卷弧翼火箭弹在超声速情况下的气动力和气动热问题.对火箭弹流场进行数值计算,与实验数据进行对比.采用薄壁模型模拟结构耦合传热,计算在一定海拔和旋转情况下火箭弹的气动加热,并与不旋转的情况进行对比.计算结果表明该数值方法能较好地计算气动力因数和气动热分布.在特定的低转速和海拔情况下的火箭弹温度分布比不旋转的稍微大一点,在旋转情况下的火箭弹尾部截面压力分布不对称,尾部流线更加紊乱;弹头和尾翼前缘温度较高,应当在火箭弹设计中予以考虑.  相似文献   

15.
为研究列车运行速度提高对空调工作的影响,采用三维定常不可压缩k-ε湍流模型,对不同运行速度下4辆编组的某新型动车组明线运行的空气动力学特性进行仿真,分析在不同运行速度下客室和司机室的空调冷凝器进、出口表面压力变化规律,预测冷凝风机通风量随列车运行速度提高的变化规律。计算结果表明:随着运行速度的提高,动车组车体表面和冷凝器进出口表面压力逐渐降低,冷凝器进、出口压差基本呈降低趋势,头车司机室和客室的前通风机通风量逐渐降低,尾车司机室和客室的后通风机压差为负且绝对值逐渐增大,说明通风机通风量逐渐提高。  相似文献   

16.
基于三维定常不可压N-S方程以及k-ε两方程湍流模型,分别在无横风和有横风环境下,用有限体积法研究高速列车车头鼻尖不同开闭状态对列车明线运行时气动性能的影响.用FLUENT分析车头鼻尖全开、全闭和半开半闭等3种不同开闭状态的高速列车气动性能,发现车头鼻尖开闭状态对列车侧向力和升力几乎没有影响,但对头车的阻力影响较大,这主要是由于头车鼻尖部分阻力变化较大引起的.在无横风环境下,车头鼻尖开闭状态对头车的气动力矩影响不大,但对尾车的点头力矩有一定影响.在横风环境下,车头鼻尖开闭状态对列车气动力矩影响不大.  相似文献   

17.
基于三维、非定常、不可压缩Navier-Stokes方程以及k-ε两方程湍流模型,利用计算流体软件FLUENT,对列车通过时路堤声屏障气动力特性进行数值仿真,研究了声屏障上脉动力的变化.建立了高速列车通过路堤声屏障的数值计算模型,采用FLUENT中的滑移网格技术,对声屏障时产生的气动力进行数值模拟,列车速度分别为200km/h、250km/h、300km/h、350km/h.通过计算得到不同列车速度下声屏障上气动力的大小和变化情况,分析了气动力沿声屏障垂向和声屏障纵向的变化规律,并拟合了声屏障压力波幅值与列车速度的关系式.在ANSYS Workbench软件中建立了声屏障的结构计算模型,将声屏障上的气动力作为外部荷载加到声屏障上,对其进行了模态分析和瞬态动力学分析.  相似文献   

18.
低雷诺数模型目前主要应用于二维简单流动的数值仿真中,为研究该湍流模型在三维复杂流动计算中的网格特征,选取不同系列的车身面网格尺寸、车身壁面第一层边界层与壁面法向高度以及边界层层数等3组网格参数,利用ANSYS对阶背式MIRA模型外流场进行数值仿真.数值仿真结果与风洞试验的结果对比表明:数值计算得到的车身表面平均y+值随面网格尺寸增加而呈现减小趋势;网格方案对气动力因数和车身表面压力因数分布影响显著,气动阻力因数仿真值与试验值误差的变化区间为0.83%~7.93%,气动升力因数误差变化区间为10%~104%;气动阻力因数和气动升力因数均随着边界层层数的增加而增大,边界层层数为5时可以得到兼顾气动力因数精度和车身表面压力因数精度的较优仿真结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号