首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Differences in the positional incorporation of 9-trans[1-14C] octadecenoic (elaidic) and 9-trans,12-trans[1-14C] octadecadienoic (linoelaidic) acids in fetal lecithin of rats were demonstrated. On the 20th day of gestation, a14C-labeled albumin complex of elaidic or linoelaidic acid was injected into the jugular vein of pregnant rats. For comparative purposes, 9-cis[1-14C] octadecenoic (oleic) or 9-cis,12-cis[1-14C] octadecadienoic (linoleic acid) was injected into the maternal circulation of rats. Animals were killed 6 hr later. Distribution of label in total lipids and phospholipids (PL) of fetal tissue was measured by TLC. Irrespective of the label, the highest percentage of total radioactivity was associated with PL-59 to 67%. Within PL, the major portion of radioactivity was found in choline phosphoglycerides (CPG)-53 to 67%, and in ethanolamine phosphoglycerides (EPG)-18 to 33%. While linoelaidic acid was predominantly esterified in the 2-position of CPG, elaidic acid was nearly equally distributed between positions 1 and 2 of lecithin. Distribution of radioactivity within fatty acid methyl esters (FAME) of CPG measured by radio-GLC suggested that oleic and possibly linoleic acids may be converted to nervonic and arachidonic acid, respectively, in the rat by the 20th day of gestation. Following injection of elaidate, radioactivity of FAME was distributed between palmitate and elaidic acid indicating that rat fetal tissue may metabolize elaidic acid via β-oxidation. In contrast, following injection of linoelaidate, radioactivity of FAME was primarily associated withtt-18∶2, suggesting little biotransformation to other fatty acids by fetal tissues.  相似文献   

2.
The differential uptake and targeting of intravenously infused [1-14C]palmitic ([1-14C] 16∶0) and [1-14C]arachidonic ([1-14C]20∶4n−6) acids into heart lipid pools were determined in awake adult male rats. The fatty acid tracers were infused (170 μCi/kg) through the femoral vein at a constant rate of 0.4 mL/min over 5 min. At 10 min postinfusion, the rats were killed using pentobarbital. The hearts were rapidly removed, washed free of exogenous blood, and frozen in dry ice. Arterial blood was withdrawn over the course of the experiment to determine plasma radiotracer levels. Lipids were extracted from heart tissue using a two-phase system, and total radioactivity was measured in the nonvolatile aqueous and organic fractions. Both fatty acid tracers had similar plasma curves, but were differentially distributed into heart lipid compartments. The extent of [1-14C]20∶4n−6 esterification into heart phospholipids, primarily choline glycerophospholipids, was elevated 3.5-fold compared to [1-14C]16∶0. The unilateral incorporation coefficient, k *, which represents tissue radioactivity divided by the integrated plasma radioactivity for heart phospholipid, was sevenfold greater for [1-14C]20∶4n−6 than for [1-14C]16∶0. In contrast, [1-14C]16∶0 was esterified mainly into heart neutral lipids, primarily triacylglycerols (TG), and was also found in the nonvolatile aqueous compartment. Thus, in rat heart, [1-14C]20∶4n−6 was primarily targeted for esterification into phospholipids, while [1-14C]16∶0 was targeted for esterification into TG or metabolized into nonvolatile aqueous components.  相似文献   

3.
Placental transport of 9-trans [1-14C] octadecenoic (elaidic) and 9-trans,12-trans [1-14C] octadecadienoic (linoelaidic) acids was demonstrated in rats. On the 18th day of gestation, a14C-labeled albumin complex of elaidic or linoelaidic acid was injected into the jugular vein of pregnant rats. For comparison, 9-cis [1-14C] octadecenoic (oleic) or 9-cis,12-cis [1-14C] octadecadienoic (linoleic) acid also was injected into the maternal circulation of rats. All animals were sacrificed 1 hr following injection. Lipid composition and distribution of label were determined in maternal plasma, placental and fetal tissues. Differences in specific activities of plasma, placental and fetal total lipids indicated a decreasing concentration gradient for bothcis andtrans isomers of octadecenoic and octadecadienoic acids. Distribution of radioactivity in various lipid components was determined by thin layer chromatography. Irrespective of the label, the highest percentage of total radioactivity was carried by triglycerides (TG) in maternal plasma (∼60–80%), and was incorporated mainly in phospholipids (PL) of fetal tissues (∼50–60%). A nearly equal distribution of the label was found between PL and TG of placental lipids (∼40%). Radioactivity of fatty acid methyl esters (FAME) determined by radiogas liquid chromatography indicated that after injection of linoelaidate, radioactivity of maternal plasma, placental and fetal tissue FAME was associated only witht,t-18∶2. Following injection of elaidate, all the radioactivity in placental FAME was associated witht-18∶1; however, in fetal tissues, the label was distributed between 16∶0 andt-18∶1. These findings suggest that, in contrast to linoelaidic acid, rat fetal tissues can metabolize elaidic acid via β oxidation to form acetyl CoA and palmitic acid.  相似文献   

4.
Harmon SD  Kaduce TL  Manuel TD  Spector AA 《Lipids》2003,38(4):469-476
The objective of this study was to determine the effect of 2,2-diphenyl-5-(4-{[(1E)-pyridin-3-yl-methylidene]-amino}piperazin-1-yl)pentanenitrile (SC-26196), a Δ6-desaturase inhibitor, on PUFA metabolism in human cells. SC-26196 inhibited the desaturation of 2 μM [1-14C] 18∶2n−6 by 87–95% in cultured human skin fibroblasts, coronary artery smooth muscle cells, and astrocytes. By contrast, SC-26196 did not affect the conversion of [1-14C]20∶3n−6 to 20∶4 in the fibroblasts, demonstrating that it is selective for Δ6-desaturase. The IC50 values for inhibition of the desaturation of 2 μM [1-14C] 18∶3n−3 and [3-14C]24∶5n−3 in the fibroblasts, 0.2–0.4 μM, were similar to those for the inhibition of [1-14C] 18∶2n−6 desaturation, and the rates of recovery of [1-14C] 18∶2n−6 and [3-14C] 24∶5n−3 desaturation after removal of SC-26196 from the culture medium also were similar. SC-26196 reduced the conversion of [3-14C] 22∶5n−3 and [3-14C] 24∶5n−3 to DHA by 75 and 84%, respectively, but it had no effect on the retroconversion of [3-14C] 24∶6n−3 to DHA. These results demonstrate that SC-26196 effectively inhibits the desaturation of 18- and 24-carbon PUFA and, therefore, decreases the synthesis of arachidonic acid, EPA, and DHA in human cells. Furthermore, they provide additional evidence that the conversion of 22∶5n−3 to DHA involves Δ6-desaturation.  相似文献   

5.
Hepatic metabolism of the two main isomers of CLA (9cis-11 trans, 10trans-12cisC18∶2) was compared to that of oleic acid (representative of the main plasma FA) in 16 rats by using the in vitro method of incubated liver slices. Liver tissue samples were incubated at 37°C for 17h under an atmosphere of 95% O2/5%CO2 in a medium supplemented with 0.75 mM of FA mixture (representative of circulating nonesterified FA) and with 55 μM [1-14C]9cis-11 trans C18∶2, [1-14C]10trans-12cis C18∶2, or [1-14C]oleate. The uptake of CLA by hepatocytes was similar for both isomers (9%) and was three times higher (P<0.01) than for oleate (2.6%). The rate of CLA isomer oxidation was two times higher (49 and 40% of incorporated amounts of 9cis-11 trans and 10trans-12 cis, respectively) than that of oleate (P<0.01). Total oxidation of oleate and CLA isomers into [14CO2] was low (2 to 7% of total oxidized FA) compared to the partial oxidation (93 to 98%) leading to the production of [14C] acid-soluble products. CLA isoemrs escaping from catabolism were both highly desaturated (26.7 and 26.8%) into conjugated 18∶3. Oleate and CLA isomers were mainly esterified into neutral lipids (30%). They were slowly secreted as parts of VLDL particles (<0.4% of FA incorporated into cells), the extent of secretion of oleate and of 10trans-12 cis being 2.2-fold higher than that of 9cis-11 trans (P<0.02). In conclusion, this study clearly showed that both CLA isomers were highly catabolized by hepatocytes, reducing their availability for peripheral tissues. Moreover, more than 25% of CLA escaping from catabolism was converted into conjugated 18∶3, the biological properties of which remain to be elucidated.  相似文献   

6.
Fifteen-day-old rats divided into two groups were given [1-14C]acetate or [U-14C] glucose by intracranial injection and were sacrificed after 1 hr. Analysis of lipids from the two groups showed differences in the incorporation of radioactivity in the polar lipids and cholesterol. Analysis of brain fatty acid showed that whereas radioactivity from acetate was incorporated into saturated, monoand polyunsaturated fatty acids, the radioactivity from [U-14C] glucose was found only in 16∶0, 18∶0, and 18∶1. No radioactivity was found in polyunsaturated fatty acids even after concentration of this fraction by AgNO3:SiO2 thin layer chromatographic method. This difference is discussed in hypothetical terms of nonhomogeneous acetyl CoA pool, formation of acetyl CoA from glucose exclusively inside the mitochondria, and activation of injected acetate to acetyl CoA.  相似文献   

7.
β-Oxidation of conjugated linoleic acid isomers and linoleic acid in rats   总被引:1,自引:0,他引:1  
To assess the oxidative metabolism of conjugated linoleic acid (CLA) isomers, rats were force-fed 1.5–2.6 MBq of [1-14C]-linoleic acid (9c,12c-18∶2),-rumenic acid (9c,11t-18∶2), or-10trans, 12cis-18∶2 (10t, 12c-18∶2), and 14CO2 production was monitored for 24 h. The animals were then necropsied and the radioactivity determined in different tissues. Both CLA isomers were oxidized significantly more than linoleic acid. Moreover, less radioactivity was recovered in most tissues after CLA intake than after linoleic acid intake. The substantial oxidation of CLA isomers must be considered when assessing the putative health benefits of CLA supplements.  相似文献   

8.
Octadecapentaenoic acid (all-cis δ3,6,9,12,15–18∶5; 18∶5n−3) is an unusual fatty acid found in marine dinophytes, haptophytes, and prasinophytes. It is not present at higher trophic levels in the marine food web, but its metabolism by animals ingesting algae is unknown. Here we studied the metabolism of 18∶5n−3 in cell lines derived from turbot (Scophthalmus maximus), gilthead sea bream (Sparus aurata), and Atlantic salmon (Salmo salar). Cells were incubated in the presence of approximately 1 μM [U-14C] 18∶5n−3 methyl ester or [U-14C]18∶4n−3 (octadecatetraenoic acid; all-cis δ6,9,12,15–18∶4) methyl ester, both derived from the alga Isochrysis galbana grown in H14CO3 , and also with 25 μM unlabeled 18∶5n−3 or 18∶4n−3. Cells were also incubated with 25 μM trans δ2, all-cis δ6,9,12,15–18∶5 (2-trans 18∶5n−3) produced by alkaline isomerization of 18∶5n−3 chemically synthesized from docosahexaenoic acid (all-cis δ4,7,10,13,16,19–22∶6). Radioisotope and mass analyses of total fatty acids extracted from cells incubated with 18∶5n−3 were consistent with this fatty acid being rapidly metabolized to 18∶4n−3 which was then elongated and further desaturated to eicosatetraenoic acid (all-cis δ8,11,14,17,19–20∶4) and eicosapentaenoic acid (all-cis δ5,8,11,14,17–20∶5). Similar mass increases of 18∶4n−3 and its elongation and further desaturation products occurred in cells incubated with 18∶5n−3 or 2-trans 18∶5n−3. We conclude that 18∶5n−3 is readily converted biochemically to 18∶4n−3 via a 2-trans 18∶5n−3 intermediate generated by a Δ3, Δ2-enoyl-CoA-iso-merase acting on 18∶5n−3. Thus, 2-trans 18∶5n−3 is implicated as a common intermediate in the β-oxidation of both 18∶5n−3 and 18∶4n−3.  相似文献   

9.
Ves-Losada A  Maté SM  Brenner RR 《Lipids》2001,36(3):273-282
Liver nuclear incorporation of stearic (18∶0), linoleic (18∶2n−6), and arachidonic (20∶4n−6) acids was studied by incubation in vitro of the [1-14C] fatty acids with nuclei, with or without the cytosol fraction at different times. The [1-14C] fatty acids were incorporated into the nuclei as free fatty acids in the following order: 18∶0>20∶4n−6≫18∶2n−6, and esterified into nuclear lipids by an acyl-CoA pathway. All [1-14C] fatty acids were esterified mainly to phospholipids and triacylglycerols and in a minor proportion to diacylglycerols. Only [1-14C] 18∶2n−6-CoA was incorporated into cholesterol esters. The incorporation was not modified by cytosol addition. The incorporation of 20∶4n−6 into nuclear phosphatidylcholine (PC) pools was also studied by incubation of liver nuclei in vitro with [1-14C]20∶4n−6-CoA, and nuclear labeled PC molecular species were determined. From the 15 PC nuclear molecular species determined, five were labeled with [1-14C]20∶4n−6-CoA: 18∶0–20∶4, 16∶0–20∶4, 18∶1–20∶4, 18∶2–20∶4, and 20∶4–20∶4. The highest specific radioactivity was found in 20∶4–20∶4 PC, which is a minor species. In conclusion, liver cell nuclei possess the necessary enzymes to incorporate exogenous saturated and unsaturated fatty acids into lipids by an acyl-CoA pathway, showing specificity for each fatty acid. Liver cell nuclei also utilize exogenous 20∶4n−6-CoA to synthesize the major molecular species of PC with 20∶4n−6 at the sn-2 position. However, the most actively synthesized is 20∶4–20∶4 PC, which is a quantitatively minor component. The labeling pattern of 20∶4–20∶4 PC would indicate that this molecular species is synthesized mainly by the de novo pathway.  相似文献   

10.
Natarajan  V.  Schmid  H. H. O. 《Lipids》1977,12(10):872-875
A mixture ofcis-9-[1-14C] octadecenol and [1-14C] docosanol was injected into the brains of 19-day-old rats, and incorporation of radioactivity into brain lipids was determined after 3, 12, and 24 hr. Both alcohols were metabolized by the brain but at different rates; each was oxidized to the corresponding fatty acid, but oleic acid was more radily incorporated into polar lipids. Substantial amounts of radioactivity were incorporated into 18∶1 alkyl and alk-1-enyl moieties of the ethanolamine phosphoglycerides and into 18∶1 alkyl moieties of the choline phosphoglycerides. Even after the disappearance of the 18∶1 alcohol from the substrate mixture (12 hr), the 22∶0 alcohol was not used to any measurable extent for alkyl and alk-1-enyl glycerol formation.  相似文献   

11.
The incorporation of [1-14C]18∶3n−3, (LNA) and [1-14C]-22∶6n−3 (DHA), and the metabolismvia the desaturase/elongase pathways of [1-14C]LNA, and [1-14C]20∶5n−3 (EPA) were studied in brain cells from newly-weaned (1-month-old) and 4-month-old turbot. The rank order of the extent of net incorporation of both LNA and DHA into glycerophospholipids was total diradyl glycerophosphocholines (CPL)> total diradyl glycerophosphoethanolamines (EPL)> phosphatidylserine (PS) and phosphatidylinositol (PI) and was independent of the polyunsaturated fatty acid added, the age of the fish and the time of incubation. However, the rate of incorporation of LNA into total lipid, CPL, EPL and PS was significantly greater than the rate of incorporation of DHA, and there was a significantly greater amount of DHA incorporated into EPL than LNA. There was no significant difference between the amounts of LNA and DHA incorporated into total lipid, CPL, PS and PI. Therefore, little preferential uptake and incorporation of DHA into brain cells was apparent. In 24-h incubations, on average 1.1% and 8.5% of radioactivity from [1-14C]LNA and [1-14C]EPA, respectively, were recovered in the DHA fraction. Therefore, LNA cannot contribute significantly to brain DHA levels in the turbot but EPA can. There were no significant differences between the amounts of radioactivity from either [1-14C]LNA or [1-14C]EPA recovered in the individual products/intermediates of the desaturase pathways in brain cells from 30-day-old and 120-day-old turbot.  相似文献   

12.
The effectiveness of different fatty acids as inhibitors of fatty acyl Δ5 desaturation activity in human skin fibroblasts has been investigated. When incubated with 2.25 μM [14C] eicosatrienoate (20∶3ω6) in otherwise lipid-free medium, these cells rapidly incorporate the radiolabeled fatty acid into cellular glycerolipids and desaturate it to produce both [14C] arachidonate and [14C] docosatetraenoate. The Δ5 desaturation activity can be enhanced by prior growth of the cells without serum lipids. Elaidate (9t–18∶1) is a potent inhibitor of Δ5 desaturation whiletrans-vaccenate (11t–18∶1) is virtually without effect. Oleate and linoleate are only mildly inhibitory. Linoelaidate (9t, 12t–18∶2) is more inhibitory than linoleate but significantly less effective than elaidate. The effects of elaidate can be readily overcome by increasing the concentration of exogenous eicosatrienoate. Studies with a variety oftrans monounsaturates of differing chain lengths indicate that the ω9trans fatty acids are potent inhibitors of Δ5 desaturation, while ω7trans fatty acids are relatively ineffective. Intact human fibroblasts could thus be important in characterizing novel fatty acids as selective inhibitors of arachidonate synthesis in vivo.  相似文献   

13.
Assessment has been made of the specificity of a purified phospholipase A2 from the 106,000×g pellet (microsomal fraction) of bovine grey matter which shows strong activity toward phosphatidylinositol (PI). In the first series of experiments involving the utilization as substrates of PI with different14C- or3H-labeled fatty acids in the 2-position, the purified phospholipase A2 most readily removed 16∶0 palmitic acid, followed by 18∶0 stearic acid, 18∶1 oleic acid and 20∶4 arachidonic acid. In the second series of experiments, the purified phospholipase A2 showed preferential action toward PI (100%) compared to phosphatidylcholine (PC, 62.5%), phosphatidic acid (PA, 32.6%), phosphatidylethanolamine (PE, 25.1%) and phosphatidylserine (PS, 21.5%), where each phosphoglyceride was labeled in the 2-position with [1-14C] oleic acid. In the third series of experiments, fatty acids were shown to cause inhibition of action of the purified phospholipase A2 on 1-acyl, 2-[1-14C] oleoyl PI in the order 20∶4>18∶1>18∶0>16∶0 which is the reverse order to that just noted. In the final series of experiments, the addition of the phosphoglycerides PC, PE, PS and PA in amounts of 5 or 10 μM caused either no inhibition (PE, 2%), slight inhibition (PC, 15%) or reasonably significant inhibition (PA, 20% and PS, 40%) of action of the purified phospholipase A2 on 1-acyl, 2-[1-14C]-oleoyl PI. The pattern of specificity observed for the purified phospholipase A2 combined with its microsomal location are the expected properties of a phospholipase A2 that might function in a deacylation-reacylation cycle for modifying the fatty acid distribution in PI.  相似文献   

14.
Ruyter B  Thomassen MS 《Lipids》1999,34(11):1167-1176
Oxidation, esterification, desaturation, and elongation of [1-14C]18∶2n−6 and [1-14C]18∶3n−3 were studied using hepatocytes from Atlantic salmon (Salmo salar I.) maintained on diets deficient in n−3 and n−6 polyunsaturated fatty acids (PUFA) or supplemented with n−3 PUFA. For both dietary groups, radioactivity from 18∶3n−3 was incoporated into lipid fractions two to three times faster than from 18∶2n−6, and essential fatty acids (FFA) deficiency doubled the incorporation. Oxidation to CO2 was very low and was independent of substrate or diet, whereas oxidation to acid-soluble products was stimulated by EFA deficiency. Products from 18∶2n−6 were mainly 18∶3n−6, 20∶3n−6, and 20∶4n−6, with minor amounts of 20∶2n−6 and 22∶5n−6. Products from 18∶3n−3 were mainly 18∶4n−3, 20∶5n−3, and 22∶6n−3, with small amounts of 20∶3n−3. The percentage of 22∶6n−3 in the polar lipid fraction of EFA-deficient hepatocytes was fourfold higher than in n−3 PUFA-supplemented cells. This correlated well with our other results obtained after abdominal injection of [1-14C]18∶3n−3 and [1-14C]18∶2n−6. In hepatocytes incubated with [4,5-3H]-22∶6n−3, 20∶5n−3 was the main product. This retrocon-version was increased by EFA deficiency, as was peroxisomal β-oxidation activity. This study shows that 18∶2n−6 and 18∶3n−3 can be elongated and desaturated in Atlantic salmon liver, and that this conversion and the activity of retroconversion of very long chain PUFA is markedly enhanced by FFA deficiency.  相似文献   

15.
Atlantic salmon were fed fish meal-based diets supplemented with either 100% fish oil (FO) or 100% rapeseed oil (RO) from an initial weight of 85 g to a final average weight of 280 g. The effects of these diets on the capacity of Atlantic salmon hepatocytes to elogate, desaturate, and esterify [1-14C]18∶1n−9 and the immediate substrates for the Δ5 desaturase, [1-14C]20∶3 n−6 and [1-14C]20∶4n−3, were investigated. Radiolabeled 18∶1n−9 was mainly esterified into cellular TAG, whereas the more polyunsaturated FA, [1-14C]20∶3n−6 and [1-14C]20∶4n−3, were primarily esterified into cellular PL. More of the elongation product, [1-14C]20∶1n−9, was produced from 18∶1n−9 and more of the desaturation and elongation products, 22∶5n−6 and 22∶6n−3, were produced from [1-14C]20∶3n−6 and [1-14C]20∶4n−3, respectively, in RO hepatocytes than in FO hepatocytes. Further, we studied whether increased addition of [1-14C]18∶1n−9 to the hepatocyte culture media would affect the capacity of hepatocytes to oxidize 18∶1n−9 to acid-soluble products and CO2. An increase in exogenous concentration of 18∶1n−9 from 7 to 100 μM resulted in a nearly twofold increase in the amount of 18∶1n−9 that was oxidized. The conversion of 20∶4n−3 and 20∶3n−6 to the longer-chain 22∶6n−3 and 22∶5n−6 was enhanced by RO feeding in Atlantic salmon hepatocytes. The increased capacity of RO hepatocytes to produce 22∶6n−3 was, however, not enought to achieve the levels found in FO hepatocytes. Our data further showed that there were no differences in the hepatocyte FA oxidation capacity and the lipid deposition of carcass and liver between the two groups.  相似文献   

16.
Various nutritional studies on CLA, a mixture of isomers of linoleic acid, have reported the occurrence of conjugated long-chain PUFA after feeding experimental animals with rumenic acid, 9c,11t–18∶2, the major CLA isomer, probably as a result of successive desaturation and chain elongation. In the present work, in vitro studies were carried out to obtain information on the conversion of rumenic acid. Experiments were first focused on the in vitro Δ6-desaturation of rumenic acid, the regulatory step in the biosynthesis of long-chain n−6 PUFA. The conversion of rumenic acid was compared to that of linoleic acid (9c,12c–18∶2). Isolated rat liver microsomes were incubated with radiolabeled 9c,12c–18∶2 and 9c,11t–18∶2 under desaturation conditions. The data indicated that [1-14C]9c,11t–18∶2 was a poorer substrate for Δ6-desaturase than [1-14C]-9c,12c–18∶2. Next, in vitro elongation of 6c,9c,11t–18∶3 and 6c,9c,12c–18∶3 (γ-linolenic acid) was investigated in rat liver microsomes. Under elongation conditions, [1-14C]6c,9c,11t–18∶3 was 1.5-fold better converted into [3-14C]8c,11c,13t–20∶3 than [1-14C]6c,9c,12c–18∶3 into [3-14C]8c,11c,14c–20∶3. Finally, in vitro Δ5-desaturation of 8c,11c,13t–20∶3 compared to 8c,11c,14c–20∶3 was investigated. The conversion level of [1-14C]8c,11c,13t–20∶3 into [1-14C]5c,8c,11c,13t–20∶4 was 10 times lower than that of [1-14C]8c,11c,14c–20∶3 into [1-14C]5c,8c,11c,14c–20∶4 at low substrate concentrations and 4 times lower at the saturating substrate level, suggesting that conjugated 20∶3 is a poor substrate for the Δ5-desaturase.  相似文献   

17.
The additional mass associated with 13C in metabolic tracers may interfere with their metabolism. The comparative isomerization and biohydrogenation of oleic, [1-13C]oleic, and [U-13C]oleic acids by mixed ruminal microbes was used to evaluate this effect. The percent of stearic, cis-14 and- 15, and trans-9 to-16 18∶1 originating from oleic acid was decreased for [U-13C]oleic acid compared with [1-13C]oleic acid. Conversely, microbial utilization of [U-13C]oleic acid resulted in more of the 13C label in cis-9 18∶1 compared with [1-13C]oleic acid (53.7 vs. 40.1%). The isomerization and biohydrogenation of oleic acid by ruminal microbes is affected by the mass of the labeled tracer.  相似文献   

18.
The incorporation of [1-14C]linoleic acid, and [1-14C]linoleic acid into cellular lipids of cultured human skin fibroblasts was studied. Cultured cells took up both labeled fatty acids at nearly the same rate and incorporated them into a variety of lipid classes. At the end of 1 hr incubation with [1-14C]linoleic acid, radioactivity was found in the triacylglycerol (TG) and choline phosphoglyceride (CPG) pools preferentially. Incorporation into the TG fraction decreased rapidly, while the uptake into CPG, serine phosphoglyceride (SPG), and ethanolamine phosphoglyceride (EPG) fractions increased progressively with longer incubation times. Similar results were obtained with [1-14C]linoleic acid as precursor. At the end of 24 hr, desaturation and chain elongation of 18∶3 n−3 was more extensive than conversion of 18∶2 n−6 to higher polyenoic acids. During pulse-chase experiments with either fatty acid precursor, the incorporated radioactivity was progressively lost from cellular lipids, particularly from the TG and CPG fractions, but continued to increase in the SPG and EPG pools. The similar labeling pattern of cellular phospholipids with linoleic or linolenic acids, and data from pulse-chase studies suggest that a direct transfer of fatty acids from CPG to EPG is a likely pathway in fibroblast cultures. Incorporation into the EPG pool during the pulse-chase experiments paralleled extensive desaturation and elongation of linoleic acid into 20∶4 n−6, and 22∶4 n−6; and of linolenic acid into 22∶5 n−3 and 22∶6 n−3.  相似文献   

19.
The deposition oftrans-12-octadecenoate-12(13)-3H (12t-18∶1-3H) was compared tocis-9-octadecenoate-10-14C (9c-18∶1-14C) in the major egg yolk neutral lipids and phospholipids.trans-12-Octadecenoate was preferentially incorporated into cholesteryl esters (CE), phosphatidylcholines (PC), and phosphatidylethanolamines (PE) but was discriminated against in triglycerides (TG). Isotopic ratios indicate that 5.9 and 5.6 times more 12t-18∶1-3H than 9c-18∶1-14C was esterified at the 1-acyl position of PE and PC, respectively. The combined 1- and 3-acyl positions of TG and the 2-acyl position of TG, PE and PC were each preferentially esterified with 9c-18∶1-14C.  相似文献   

20.
The biosynthesis of fatty acids in the diatomPhaeodactylum tricornutum was studied. The diatom was incubated with sodium [114C] acetate and the acids [1-14C] palmitic, [1-14C] stearic, [1-14C] linoleic and [1-14C] α-linolenic. The distribution of radioactivity in the products was determined by gas liquid radiochromatography. The diatom synthesized “de novo” not only saturated and monounsaturated fatty acids, but also linoleic, α-linolenic and other fatty acids including the highly polyunsaturated 20∶5ω3 and 22∶6ω3. When labeled acetate, stearic, α-linolenic or even linoleic acid were incubated with the diatom, the polyunsaturated C20 fatty acids synthesized belonged predominantly to the ω 3 family. The existence of Δ9, Δ6, Δ5, Δ4, ω6 and possibly ω3 desaturases inP. tricornutum is suggested. Member of the Carrera del Investigador Científico of the Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Member of the Carrera del Investigador Cientifico of the Consejo Nacional de Investigaciones Cientificas y Técnicas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号