首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
DO对A/O同步脱氮除磷工艺的影响研究   总被引:1,自引:0,他引:1  
采用A/O同步脱氮除磷工艺处理模拟城市污水,考察了好氧段DO浓度对该工艺处理效果的影响.结果表明,好氧段DO浓度对系统脱氮除磷效果的影响显著,当DO控制在1.5mg/L左右时,系统的处理效果最佳,可实现同步硝化反硝化和反硝化除磷,对NH4+-N、TN、TP、COD的去除率分别为99.12%、94.61%、92.85%、96.10%,平均出水NH4+-N、TN、TP、COD分别为0.25、0.68、0.5和10 mg/L.  相似文献   

2.
后置反硝化曝气生物滤池处理生活污水的研究   总被引:1,自引:1,他引:0  
采用后置反硝化曝气生物滤池处理模拟生活污水,在保证出水COD达标排放的前提下,分别向二级缺氧滤柱中投加20 mg/L的甲醇和引入0.2Q(Q为试验中系统进水的流量)的原水作为外碳源,考察了投加外碳源对系统脱氮及去除COD的影响.试验结果表明,在二级缺氧滤柱中投加20 mg/L的甲醇作为外碳源时,系统出水的NH4+-N、TN、COD平均浓度分别为5.6、8、35.8 mg/L,其去除率分别为83.6%、81%、83.5%;在二级缺氧滤柱中引入0.2Q的原水作为外碳源时,系统出水的NH4+-N、TN、COD平均浓度分别为13.9、18.3、47.7 mg/L,去除率分别为59%、56.6%、78.1%.系统采用甲醇比引入原水作为外碳源的脱氮效果好且出水的COD浓度较低.  相似文献   

3.
回流是影响脱氮过程的重要因素之一。利用间歇厌氧/好氧反应器经过四次回流对低碳源污水进行处理,在40 d的运行中,对NH+4-N、TN、COD的去除率分别为99%、70%和90%。在低C/N值条件下,反应器对高NH+4-N负荷具有较强的抗冲击能力和较高的去除率。较低的COD浓度是限制脱氮效率进一步提高的主要因素。周期内沿程试验表明,利用污泥的吸附性能,上清液经过四次回流,好氧硝化与厌氧反硝化过程被完全分离并交替进行,污染物被逐级转换,完成脱氮过程。此外,好氧池中DO浓度和厌氧池中ORP值的变化进一步验证了硝化与反硝化过程的变化规律。  相似文献   

4.
采用水解反硝化脱氮工艺,将水解酸化与反硝化脱氮过程相结合,取代缺氧反硝化,解决城镇污水冬季脱氮效果差的问题。在水解反硝化工艺的中试系统中,氨氮和总氮的去除效果受温度的影响较小,冬季和夏季氨氮去除率分别达到98.3%和98.4%,总氮去除率分别为65.2%和68.0%。以水解反硝化污泥与AAO工艺中的缺氧池污泥为研究对象,对比分析温度对两种污泥比反硝化速率和耗碳率的影响。结果显示:温度对水解池污泥的影响显著小于缺氧池污泥,在25、30℃两者反硝化速率相当,但是当温度为8、15和20℃下,水解池污泥的最大比反硝化脱氮速率分别为缺氧池污泥的1.7倍、1.3倍和1.4倍;同时,在各温度条件下,水解池污泥的耗碳率基本为缺氧池污泥的51.2%~81.7%。  相似文献   

5.
水解/AMBBR/好氧工艺对低碳源污水的脱氮研究   总被引:2,自引:0,他引:2  
针对低碳源城市污水脱氮难的问题,设计了水解/缺氧悬浮填料移动床/好氧(H/AMBBR/O)组合工艺,研究了其主要影响因素及最佳参数值下的处理效果.结果表明,当水解池、AMBBR、好氧池的HRT分别为2.5、3、6 h,硝化液回流比为300%,填料投配率为30%,水解池的污泥回流频率为4次/d、回流量为5 L/次(MLSS≈5 g/L)时,组合工艺的处理效果最佳,对COD、氨氮、TN的平均去除率分别为88.23%、98.31%、72.09%,平均出水浓度分别为26、0.89、16.35 mg/L.当T<18.0℃时硝化不完全,工艺的处理效果明显变差.将二沉池污泥回流至水解池既增加了反硝化的碳源,又实现了污泥的减量化,减量率达56%以上.  相似文献   

6.
在工艺调控的基础上,发现限氧曝气、连续流A/O工艺在长污泥龄条件下融合外排厌氧富磷上清液的侧流除磷技术可以解决污泥减量工艺对氮、磷去除能力低的问题,以此为基础开发了具有脱氮除磷功能的污泥减量LSP&PNR工艺。应用该工艺处理校园生活污水的试验结果表明,在SRT=50d、DO=0.5~1.5mg/L以及进水COD=332~420mg/L、NH,-N=30~40mg/L、TN=34~51mg/L、TP=6~9mg/L的条件下,出水COD≤23mg/L、NH3-N≤3.2mg/L、TN≤17mg/L、TP≤0.72mg/L;表观污泥产率为0.155gMLSS/gCOD。研究还发现,在LSP&PNR工艺中同步硝化反硝化是最主要的脱氮形式,约占反硝化脱氮总量的60%;代谢BOD,的需氧量为1.38~1.57kgO2/kgBOD5;进入化学除磷池的侧流液量相当于处理水量的10%~15%。  相似文献   

7.
针对城镇污水处理厂MSBR工艺提标改造时出水氮、磷指标很难同时达到一级A标准的情况,提出了强化生物脱氮措施,包括提高污泥龄(SRT)、提高污泥内回流比r、调整混合液回流比R、延长SBR池缺氧时间、合理控制溶解氧等,并在SRT=12~15 d、污泥外回流比r'=1.5、r=0.6、R=1、SBR池缺氧时间为50 min的强化条件下进行生产性试验研究。结果表明,试验组的TN去除率比对照组高了16.06%,出水TN和氨氮浓度均能稳定达到一级A标准,缺氧池、好氧池和SBR池缺氧阶段的TN去除率分别为14.1%、26.3%和24.8%,微生物协同作用和后置反硝化是MSBR工艺的主要脱氮途径,强化后置反硝化是提高MSBR工艺脱氮效果的主要方法;但强化脱氮措施对系统除磷有一定影响,试验组的TP去除率比对照组低6.10%。  相似文献   

8.
亚硝化-厌氧氨氧化组合工艺脱氮研究   总被引:7,自引:0,他引:7  
以高氨氮模拟废水为研究对象,对影响亚硝化-厌氧氨氧化组合工艺脱氮效果的几个因素(DO、pH、碱度、有机物浓度、NU4^+-N/NO2^-—N值)进行了考察,以期获得组合工艺的最佳运行方式。研究结果表明,在亚硝化温度为23~26℃,HRT=1d,进水NH4^+-N、TN浓度分别为350、420mg/L,ANH4^+-N/ANO2^--N值为0.8~1.33的条件下,组合工艺对NH4^+-N、TN的最高去除率分别为99.9%、90.8%,平均去除率分别为96%、76.1%。组合工艺的脱氮效率严重受限于亚硝化系统出水的NH4^+-N/NO2^--N值及其稳定性。  相似文献   

9.
采用自配餐厨垃圾在pH值为6、温度为35℃、TS为100 g/L的条件下进行厌氧消化,并利用其水解产生的酸化液作为外加碳源进行反硝化脱氮试验,考察了水解酸化液、甲醇、乙酸钠等三种碳源在相同COD/NO-3-N值下的脱氮效果。在COD/NO-3-N值约为5、NO-3-N初始浓度约为35 mg/L及常温条件下,甲醇、乙酸钠和水解酸化液的反硝化速率分别为7.4、13.8及16.3 mgNO-3-N/(gVSS·h)。水解酸化液作外加碳源的反硝化过程经历了两个不同NO-3-N去除速率的反应阶段,且反应过程中存在NO-2-N积累。利用基于Monod方程的动态模型对反硝化过程进行模拟,并与零级反应的反硝化速率进行比较。结果表明,以甲醇、乙酸钠、水解酸化液作碳源的反硝化速率分别为8.50、14.14、18.67 mgNO-3-N/(gVSS·h),其对甲醇和乙酸钠的模拟效果较好,而水解酸化液中由于存在多种物质同时进行反应,故模拟结果与试验结果的拟合度不高。  相似文献   

10.
通过监测污水处理厂进水水量与水质、污染物沿程去除特性和微生物活性,并采用物料衡算方法,研究A2O(其中缺氧/好氧段为氧化沟工艺)与V型滤池组合工艺的强化脱氮除磷性能。污水处理厂进水水量具有季节性变化特征;进水COD、BOD和TP浓度随进水量波动变化不大。雨季进水BOD/TN与BOD/TP值均略大于旱季对应值,且平均值分别为4.24和39.28。在A2O系统中,COD大部分在厌氧池被去除,在缺氧池和好氧池内没有显著变化;厌氧池、缺氧池和好氧池对NH+4-N的去除率分别为60.8%、10.8%和22.8%;厌氧池和好氧池对TP的去除率分别为30%和25.3%,在缺氧池无显著变化。氨氧化速率、亚硝酸盐氧化速率和反硝化速率分别为1.9、1.2和4.2 mg/(g VSS·h);经计算,硝化速率能满足系统去除NH+4-N的需求,但反硝化速率不能满足脱氮需求。V型滤池主要去除SS、TP和部分COD,其去除率分别为44.4%、79.6%和31.3%。通过物料衡算分析,去除的TN中反硝化和微生物合成贡献比例分别为50.7%和49.3%;去除的TP中有96%是由微生物和深度处理共同去除,其中有约85%由微生物去除,另11%由深度处理去除。  相似文献   

11.
介绍了生物可降解聚合体PHAs(聚羟基脂肪酸酯)的特点及其在污水反硝化脱氯中的应用。与传统液相有机基质脱氮相比,PHAs固相基质脱氮具有很多优点:为脱氮过程提供了连续的资源;有利于生物膜的培养和生成;PHAs释放的不溶有机碳不会对水质产生潜在的危害。PHAs固相基质脱氮技术已显现出了良好的应用前景。  相似文献   

12.
焦阳  赵月龙 《城市建筑》2014,(26):187-187
本文结合国内外的研究成果,从微生物角度对脱氮原理进行了阐述,并对脱氮工艺的变化进行了分析。最后,就短程硝化脱氮、好氧反硝化脱氮研究进行了展望。  相似文献   

13.
本文结合国内外的研究成果,从微生物角度对脱氮原理进行了阐述,并对脱氮工艺的变化进行了分析。最后,就短程硝化脱氮、好氧反硝化脱氮研究进行了展望。  相似文献   

14.
崔绍波  杨云龙 《山西建筑》2008,34(3):197-198
指出CAST工艺污水处理厂运行中,可以有效地去除氮,调试中结合设计进出水水质,发现不同的运行周期下对硝化、反硝化均有影响,通过调整排泥、曝气时间等运行参数,使出水氨氮达标,并总结出科学合理的运行方式。  相似文献   

15.
氢自养反硝化去除水中硝酸盐的影响因素研究   总被引:5,自引:1,他引:4  
研究了氢自养反硝化细菌在不同条件下的反硝化性能,结果表明:反硝化的适宜温度为30—40℃,35℃时的效果最佳;pH值为7.7~8.2时对硝酸盐的降解速率最快,随着pH值的升高,逐渐产生亚硝酸盐的积累,pH〈6.3或pH〉9.2时反硝化基本停滞;当硝酸盐〈100mg/L时,反应24h后对总氮的去除率〉95%,而当硝酸盐〉120mg/L时则会抑制反硝化过程;此外,随着硝酸盐的降解,菌体浓度和pH值都呈缓慢上升趋势。  相似文献   

16.
The effect of chromium Cr6+ on bacterial denitrification was investigated. The long-term influence of chromium presence was observed in packed bed reactors using methanol, ethanol, n-propanol, n-butanol, sec-butanol, tert-butanol, iso-butanol and n-pentanol as the carbon and energy sources for denitrifiers. Short-term influence was investigated by the inhibition coefficient Ki determination within activated sludge under anoxic conditions. The measured inhibition constant Ki was equal to 84.2 mg l?1 Cr6+, independently of the kind of organic compound utilized as the electron donor for the bacterial system. The concepts of the reactor resistance to inhibition (RRI) and the resistance to inhibition (RI) have been evaluated.  相似文献   

17.
改进型BIOSTYR处理景观水研究   总被引:1,自引:0,他引:1  
采用改进型BIOSTYR工艺处理景观水,考察了对TN、NH4^+-N、COD、浊度的去除效果。结果表明,该工艺除污效果好,对COD的平均去除率为55.40%,对NH4^+-N的平均去除率〉90%,对TN的平均去除率为52.08%,出水浊度为1.2~1.5NTU。  相似文献   

18.
浙江某污水厂设计规模为16×10^4m^3/d,采用Bardenpho—MBBR工艺进行升级改造后,生化池出水COD、NH4^+-N、TN、TP均值分别为17.2、0.37、7.72、0.168 mg/L,在不投加碳源的情况下即可达到准Ⅳ类水标准,生物脱氮除磷效果良好。对生化池各功能区沿程采样测定发现,好氧MBBR区对TN的去除率为28%~46%,受到泥浆水冲击后也能保持在15%~22%,系统高效去除TN得益于好氧MBBR区的同步硝化反硝化(SND)作用;由于好氧区的SND现象,平均可以节省0.23元/m^3的碳源费用,年节约碳源费用近1343.2万元;生物膜厚度和溶解氧的控制对于稳定表现SND有重要影响;系统中微生物的高通量测序结果显示,悬浮载体上硝化菌丰度为32.19%、反硝化菌丰度为4.86%,硝化菌和反硝化菌同时存在为SND现象的产生提供了微观保证;冬季低温时,悬浮载体实际承担了系统近90%的硝化负荷。  相似文献   

19.
传统与短程反硝化的影响因素及特性研究   总被引:13,自引:3,他引:13  
分别研究了传统反硝化中硝酸盐氮负荷、COD N、pH值对反硝化速率及效率的影响 ,得出传统反硝化时最大硝酸盐氮负荷为 0 .0 8kg (kgMLSS·d) ,合适的COD N为 6~ 7,适宜的pH值为 7.5~ 8。对分别以NO-3 和NO-2 为初始基质的反硝化速率进行的对比试验结果表明 ,在温度为 2 5℃、pH值为 7、基质浓度 <30 0mg L时以NO-2 为初始基质的反硝化速率较快 ,但当基质浓度 >30 0mg L后反而是以NO-3 为初始基质的反硝化速率较快  相似文献   

20.
MBR中DO对同步硝化反硝化的影响   总被引:48,自引:12,他引:48  
膜生物反应器(MBR)中,在DO为1mg/L左右,MLSS为8000-9000mg/L,温度为24℃,进水pH值为7.2,COD、NH3-N分别为523-700mg/L和17.24-24mg/L的相对稳定条件下,对COD、NH3-N、TN的去除率分别为96%、95%、92%。详细分析了在控制DO的条件下,MBR发生同步硝化、反硝化的原因,并提出了在单级好氧反应器中控制DO可发生短程硝化一反硝化生物脱氮的机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号