首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The equilibrium unfolding properties of four model protein systems were characterized using SUPREX (stability of unpurified proteins from rates of H/D exchange). SUPREX is an H/D exchange- and mass spectrometry-based technique for measuring the free energy (DeltaGf) and m-value (deltaDeltaGf/delta[denaturant]) associated with the folding/unfolding reaction of a protein. The model proteins in this study (calmodulin, carbonic anhydrase II, RmlB, Bcl-xL) were chosen to test the applicability of SUPREX to the thermodynamic analysis of larger (> approximately 15 kDa) or multidomain proteins. In the absence of ligand, DeltaGf and m-values for these proteins could not be evaluated using the conventional data acquisition and analysis methods previously established for SUPREX. However, ligand-bound forms of the proteins were amenable to conventional SUPREX analyses, and it was possible to evaluate reasonably accurate and precise binding free energies of selected ligands. In some cases, protein-ligand dissociation constants (Kd values) could also be ascertained. The SUPREX-derived binding free energies and Kd values evaluated here were in good agreement with those reported on the same complexes using other techniques.  相似文献   

2.
A protocol was developed to characterize the domain-specific thermodynamic stabilities of multidomain proteins using SUPREX (Stability of Unpurified Proteins from Rates of H/D Exchange). The protocol incorporates a protease digestion step into the conventional SUPREX protocol and enables folding free energy (DeltaGf) and cooperativity (m-value) measurements to be made on the individual domains of multidomain proteins in their native context (i.e., in the intact protein). Three multidomain protein systems (calmodulin, a Fyn construct, and transferrin) were used to validate the SUPREX-protease digestion protocol. The DeltaGf and m-value of each domain in the intact test proteins were measured in the absence and presence of ligands using the new protocol. Domain-specific thermodynamic parameters were obtained on each system; and the measured parameters were consistent with known biophysical properties of the test proteins. The known stabilization of the N-terminal domain of CaM in the context of the intact protein and the known binding affinity of a proline-rich peptide to the SH3 domain in the Fyn construct were successfully quantified using the new protocol. Qualitative information about the relative calcium binding affinities of the N- and C-terminal domains of CaM and about the relative iron binding affinities of the N- and C-terminal domains of transferrin was also obtained using the new protocol.  相似文献   

3.
Described here is a new technique, termed SPROX (stability of proteins from rates of oxidation), that can be used to measure the thermodynamic stability of proteins and protein-ligand complexes. SPROX utilizes hydrogen peroxide in the presence of increasing concentrations of a chemical denaturant to oxidize proteins. The extent of oxidation at a given oxidation time is determined as a function of the denaturant concentration using either electrospray or matrix-assisted laser desorption/ionization mass spectrometry. Ultimately, the denaturant concentration dependence of the oxidation reaction rate is used to evaluate a folding free energy (DeltaG(f)) and m value (deltaDeltaG(f)/delta[Den]) for the protein's folding/unfolding reaction. Measurements of such SPROX-derived DeltaG(f) and m values on proteins in the presence and absence of ligands can also be used to evaluate protein-ligand affinities (e.g., DeltaDeltaG(f) and Kd values). Presented here are SPROX results obtained on four model protein systems including ubiquitin, ribonuclease A (RNaseA), cyclophilin A (CypA), and bovine carbonic anhydrase II (BCAII). SPROX-derived DeltaG(f) and m values on these proteins are compared to values obtained using more established techniques (e.g., CD spectroscopy and SUPREX). The dissociation constants of several known protein-ligand complexes involving these proteins were also determined using SPROX and compared to previously reported values. The complexes included the CypA-cyclosporin A complex and the BCAII-4-carboxybenzenesulfonamide complex. The accuracy and precision of SPROX-derived thermodynamic parameters for the model proteins and protein-ligand complexes in this study are discussed as well as the caveats of the technique.  相似文献   

4.
Recently, we reported on a new H/D exchange- and matrix-assisted laser desorption/ionization (MALDI)-based technique, termed SUPREX, that can be used to measure the thermodynamic stability of a protein (Ghaemmaghami, S.; Fitzgerald, M. C.; Oas, T. G. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 8296-8301). In the work described here, we report on our efforts to optimize the sensitivity of SUPREX analyses. We describe a new sample handling protocol for SUPREX that involves the use of batch chromatography methods with reversed-phase chromatographic media for the microconcentration and desalting of SUPREX samples. Using ribonuclease A as a model protein system, we demonstrate that our new protocol permits the SUPREX analysis of as little as 10 pmol of protein. This amount of protein is 100-fold less than the amount of material required in our initial SUPREX protocol, and it is 1-2 orders of magnitude less than the amount of material required in conventional spectroscopy-based methods for measuring the thermodynamic stability of a protein.  相似文献   

5.
We report on the application of SUPREX (stability of unpurified proteins from rates of H/D exchange) to the analysis of a protein-ligand binding interaction under the ex vivo solution conditions of a human lung tumor tissue lysate. A SUPREX-derived binding free energy (i.e. DeltaDeltaG(f) value) and dissociation constant (i.e., K(d) value) were determined for the binding of cyclosporin A (CsA) to a cyclophilin A (CypA) sample in which the protein was a component of a tissue lysate derived from fresh frozen lung tumor. The DeltaDeltaG(f) and K(d) values determined by SUPREX for CsA binding to CypA in this unpurified protein sample, 4.7 +/- 0.8 kcal/mol and 77 +/- 17 nM, respectively, were comparable to the those obtained when SUPREX was used to analyze the binding of CsA to a highly purified CypA sample, 4.2 +/- 1.0 kcal/mol and 32 +/- 20 nM, respectively. Moreover, the SUPREX-derived K(d) values determined in this work were both in the range of those previously reported for the CypA-CsA complex. The results of this proof-of-principle work validate the extension of SUPREX to the thermodynamic analysis of proteins and protein-ligand binding interactions in the unpurified, ex vivo conditions of human tissue lysates,and they represent the first K(d) measurement on a protein-ligand complex under such conditions  相似文献   

6.
Described here is a mass spectrometry-based protocol to study the thermodynamic stability of proteins and protein-ligand complexes using the chemical denaturant dependence of the slow H/D exchange reaction of the imidazole C(2) proton in histidine side chains. The protocol is developed using several model protein systems including: ribonuclease (Rnase) A, myoglobin, bovine carbonic anhydrase (BCA) II, hemoglobin (Hb), and the hemoglobin-haptoglobin (Hb-Hp) protein complex. Folding free energies consistent with those previously determined by other more conventional techniques were obtained for the two-state folding proteins, Rnase A and myoglobin. The protocol successfully detected a previously observed partially unfolded intermediate stabilized in the BCA II folding/unfolding reaction, and it could be used to generate a K(d) value of 0.24 nM for the Hb-Hp complex. The compatibility of the protocol with conventional mass spectrometry-based proteomic sample preparation and analysis methods was also demonstrated in an experiment in which the protocol was used to detect the binding of zinc to superoxide dismutase in the yeast cell lysate sample. The yeast cell sample analyses also helped define the scope of the technique, which requires the presence of globally protected histidine residues in a protein's three-dimensional structure for successful application.  相似文献   

7.
Manipulation of protein charge states in electrospray ionization-mass spectrometry (ESI-MS) has implications for the study of intact proteins, protein-protein interactions, post-translational modifications, and protein sequencing. Control of these protein charge states is often difficult to achieve with conventional methods of analysis. A novel ambient ionization configuration, continuous flow-extractive desorption electrospray ionization (CF-EDESI), is presented as a means to control the charge state distribution of proteins. A key feature of the CF-EDESI technique is the continuous flow needle, which is a hypodermic needle presented orthogonal to the electrospray source and delivers a solvent flow containing analytes for extractive desorption ionization. With this source design, the successful manipulation of cytochrome c and lysozyme charge states with the use of different additives, such as acetic acid and sulfolane, was demonstrated. Results were compared to data obtained with conventional electrospray ionization. Good agreement with previously reported studies of cytochrome c unfolding/folding studies, performed by conventional ESI-MS, is evident. In addition to the protein analysis presented, the CF-EDESI-MS technique should be applicable for analyzing atypical analyte and solvent systems by mass spectrometry while maintaining optimal electrospray source conditions.  相似文献   

8.
A novel method for proving the time course of the unfolding and refolding processes of metalloprotein bovine carbonic anhydrase 2 (CA2) is demonstrated using electrospray ionization mass spectrometry (ESI MS) combined with pH jumps between 3.6 and 4.4. The shift in mass accompanied by the release or coordination of a zinc ion and the change in the charge state distribution were measured to evaluate the folding process. The time course of the ESI mass spectra revealed the existence of four types of ions in the experimental system, i.e., lower charged apo-CA2 and holo-CA2 ions and higher charged apo-CA2 and holo-CA2 ions. The deconvolution spectrum of the ion peak ensemble for each type of ion was processed and time course plots of the relative intensities of the four ions were prepared in order to analyze the folding processes. These analyses revealed the coexistence of two folding states of the lower and higher charged apo-CA2 under the condition of pH 3.6. The lower and higher charged apoproteins spontaneously refolded to the lower charged holoprotein by a pH jump from 3.6 to 4.4 without the addition of an extra zinc ion. The higher charged holoprotein observed during both the unfolding and refolding processes was considered to be an intermediate of the change in folding. The present study indicates that ESI MS combined with pH jump would be a powerful method to probe the unfolding and refolding of proteins. This method simultaneously measures mass spectra and analyzes the folding processes as a function of time using deconvolution spectra constructed by selecting a suitable m/z range for the analysis from the peaks of charge state distributions.  相似文献   

9.
Described here is a mass spectrometry-based covalent labeling protocol that utilizes the amine reactive reagent, s-methyl thioacetimidate (SMTA), to study the chemical denaturant-induced equilibrium unfolding/refolding properties of proteins and protein-ligand complexes in solution. The protocol, which involves evaluating the rate at which globally protected amine groups in a protein are modified with SMTA as a function of chemical denaturant concentration, is developed and applied to the analysis of eight protein samples including six purified protein samples (ubiquitin, BCAII, RNaseA, 4OT, and lysozyme with, and without GlcNAc), a five-protein mixture comprised of ubiquitin, BCAII, RNaseA, Cytochrome C, and lysozyme, and a yeast cell lysate. In ideal cases the folding free energies of proteins and the dissociation constants of protein-ligand complexes can be accurately evaluated using the protocol. A direct MALDI-TOF readout is demonstrated for analysis of purified protein samples. Bottom-up proteomic strategies involving gel-based and/or LC-MS-based shotgun proteomic platforms are also demonstrated for the analyses of complex protein samples. Analysis of proteins in a yeast cell lysate suggests the SMTA-labeling protocol expands the peptide and protein coverage in chemical modification- and shotgun proteomics-based strategies for making thermodynamic measurements of protein folding and stability on the proteomic scale.  相似文献   

10.
Reversed-phase high-performance liquid chromatography (RP-HPLC) is a widely used technique for the separation of proteins under low pH aquo-organic solvent gradient elution conditions, typically carried out at ambient temperatures. These conditions can however induce conformational effects with proteins as evident from changes in their biological or immunological activities. By monitoring the influence of temperature on the retention and band-broadening characteristics of proteins, the role of conformational processes in these lipophilic environments can be examined. These processes can then be interpreted in terms of a two-state model involving a native (N) and a fully unfolded species (U) or more complex folding/unfolding models. In the present study, the gradient elution RP-HPLC behavior of sperm whale myoglobin (SWMYO) and hen egg white lysozyme (HEWL) has been investigated at temperatures between 5 and 85 degrees C with n-octadecyl (C18)- and n-butyl (C4)-silica reversed-phase sorbents. The interaction of these proteins with these reversed-phase sorbents has also been examined in terms of the contributions that the heme prosthetic group of SWMYO and the disulfide bonds in HEWL make to the stabilization of the native conformation of these proteins in these hydrophobic environments. The observed interconversions of multiple peak zones of SWMYO and HEWL in the presence of C18 and C4 ligands have been subsequently analyzed in terms of the unfolding processes that these proteins can undergo at low pH and at elevated temperatures. The ability of hydrocarbonaceous ligands to trap ensemblies of partially unfolded conformational intermediates of proteins in these perturbing environments has been examined. Pseudo-first-order rate constants have been derived for these processes from analysis of the dependencies on time of the concentration of the different protein species at specified temperatures. The relationship of these processes to the conformational transitions that these proteins can undergo via molten globule-like intermediates (i.e., compact denatured states with a significant amount of residual secondary structure) in solution has also been examined. This study thus further documents an experimental strategy to assess the folding/unfolding behavior of globular proteins in the presence of hydrophobic surfaces and aquo-organic solvents, whereby the system parameters can potentially affect the preservation of native conformations, and thus the function, of the protein under these conditions.  相似文献   

11.
Wang Q  Ma L  Hao YH  Tan Z 《Analytical chemistry》2010,82(22):9469-9475
Guanine rich (G-rich) nucleic acids form G-quadruplex structures that are implicated in many biological processes, pharmaceutical applications, and molecular machinery. The folding equilibrium constant (K(F)) of the G-quadruplex not only determines its stability and competition against duplex formation in genomic DNA but also defines its recognition by proteins and drugs and technical specifications. The K(F) is most conveniently derived from thermal melting analysis that has so far yielded extremely diversified results for the human telomere G-quadruplex. Melting analysis cannot be used for nucleic acids associated with proteins, thus has difficulty to study how protein association affects the folding equilibrium of G-quadruplex structure. In this work, we established an isothermal differential hybridization (IDH) method that is able to determine the K(F) of G-quadruplex, either alone or associated with proteins. Using this method, we studied the folding equilibrium of the core sequence G(3)(T(2)AG(3))(3) from vertebrate telomere in K(+) and Na(+) solutions and how it is affected by proteins associated at its adjacent regions. Our results show that the K(F) obtained for the free G-quadruplex is within 1 order of magnitude of most of those obtained by melting analysis and protein binding beside a G-quadruplex can dramatically destabilize the G-quadruplex.  相似文献   

12.
Understanding the mechanisms of protein folding is a major challenge that is being addressed effectively by collaboration between researchers in the physical and life sciences. Recently, it has become possible to mechanically unfold proteins by pulling on their two termini using local force probes such as the atomic force microscope. Here, we present data from experiments in which synthetic protein polymers designed to mimic naturally occurring polyproteins have been mechanically unfolded. For many years protein folding dynamics have been studied using chemical denaturation, and we therefore firstly discuss our mechanical unfolding data in the context of such experiments and show that the two unfolding mechanisms are not the same, at least for the proteins studied here. We also report unexpected observations that indicate a history effect in the observed unfolding forces of polymeric proteins and explain this in terms of the changing number of domains remaining to unfold and the increasing compliance of the lengthening unstructured polypeptide chain produced each time a domain unfolds.  相似文献   

13.
Spatiotemporal control of protein structure and activity in biological systems has important and broad implications in biomedical sciences as evidenced by recent advances in optogenetic approaches. Here, this study demonstrates that nanosecond pulsed laser heating of gold nanoparticles (GNP) leads to an ultrahigh and ultrashort temperature increase, coined as “molecular hyperthermia”, which causes selective unfolding and inactivation of proteins adjacent to the GNP. Protein inactivation is highly dependent on both laser pulse energy and GNP size, and has a well‐defined impact zone in the nanometer scale. It is anticipated that the fine control over protein structure and function enabled by this discovery will be highly enabling within a number of arenas, from probing the biophysics of protein folding/unfolding to the nanoscopic manipulation of biological systems via an optical trigger, to developing novel therapeutics for disease treatment without genetic modification.  相似文献   

14.
Guo LH  Qu N 《Analytical chemistry》2006,78(17):6275-6278
Protein folding has been studied extensively with an aim to better understanding of the relationship between protein sequence, structure, and function. A large variety of techniques have been developed and utilized to probe protein conformation and folding/unfolding transition. In this report, electrochemical monitoring of urea-induced unfolding of a large cofactor-free protein, bovine serum albumin (BSA), is described. Enhanced electrochemical oxidation of tyrosine and tryptophan in free amino acids and in BSA was achieved on an indium tin oxide electrode by using an electron mediator, Os(bpy)2dppz (bpy = 2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine). The oxidation current was used as a signal reporter in the monitoring of urea-induced BSA denaturation. At high urea concentrations, the electrochemical signal increased by 3-fold relative to the native protein. The increase is attributed to the closer contact between the oxidizable residues in the unfolded BSA and Os(bpy)2dppz. The degree of unfolding assessed by electrochemistry correlates well with the established fluorescence technique in the range of 0-10 M urea. The method can be used to investigate the unfolding process of other cofactor-free proteins.  相似文献   

15.
Proteomics has grown significantly with the aid of new technologies that consistently are becoming more streamlined. While processing of proteins from a whole cell lysate is typically done in a bottom-up fashion utilizing MS/MS of peptides from enzymatically digested proteins, top-down proteomics is becoming a viable alternative that until recently has been limited largely to offline analysis by tandem mass spectrometry. Here we describe a method for high-resolution tandem mass spectrometery of intact proteins on a chromatographic time scale. In a single liquid chromatography-tandem mass spectrometry (LC-MS/MS) run, we have identified 22 yeast proteins with molecular weights from 14 to 35 kDa. Using anion exchange chromatography to fractionate a whole cell lysate before online LC-MS/MS, we have detected 231 metabolically labeled (14N/15N) protein pairs from Saccharomyces cerevisiae. Thirty-nine additional proteins were identified and characterized from LC-MS/MS of selected anion exchange fractions. Automated localization of multiple acetylations on Histone H4 was also accomplished on an LC time scale from a complex protein mixture. To our knowledge, this is the first demonstration of top-down proteomics (i.e., many identifications) on linear ion trap Fourier transform (LTQ FT) systems using high-resolution MS/MS data obtained on a chromatographic time scale.  相似文献   

16.
Folding and unfolding are essential ways for a protein to regulate its biological activity. The misfolding of proteins usually reduces or completely compromises their biological functions, which eventually causes a wide range of diseases including neurodegeneration diseases, type II diabetes, and cancers. Therefore, materials that can regulate protein folding and maintain proteostasis are of significant biological and medical importance. In living organisms, molecular chaperones are a family of proteins that maintain proteostasis by interacting with, stabilizing, and repairing various non-native proteins. In the past few decades, efforts have been made to create artificial systems to mimic the structure and biological functions of nature chaperonins. Herein, recent progress in the design and construction of materials that mimic different kinds of natural molecular chaperones is summarized. The fabrication methods, construction rules, and working mechanisms of these artificial chaperone systems are described. The application of these materials in enhancing the thermal stability of proteins, assisting de novo folding of proteins, and preventing formation of toxic protein aggregates is also highlighted and explored. Finally, the challenges and potential in the field of chaperone-mimetic materials are discussed.  相似文献   

17.
This paper presents a technique for analyzing the residual stresses in concrete pavements subjected to non-linear (stress or strain) gradients throughout the slab thickness. The analysis is separated into two parts. In the first part, an expression is presented for calculating the self equilibrated stresses within a cross-section due to internal restraints (i.e. satisfying equilibrium conditions and continuity of the strain field within the cross-section). These stresses are independent of slab dimensions and boundary conditions. In step two, the stresses due to external restraints (i.e. self-weight and subgrade reaction) are calculated using an equivalent linear temperature gradient obtained from the first part and using existing closed form solutions by Westergaard [Westergaard, H. M., Computation of stresses in concrete roads. In Proc. of the 5th Annual Meeting, Vol. 5, Part I, Highway Research Board, 1926, pp. 90–112] or Bradbury [Bradbury, R. D., Reinforced Concrete Pavements. Wire Reinforcement Institute, Washington D.C., 1947.]. The solution to this step includes slab length and boundary conditions. Total internal stresses due to non-linear gradients are obtained using the superposition principle. The proposed method has been applied to field data from another study for varying temperature profiles within a 24 h period and compared to results from conventional analysis assuming linear gradients. Significant differences were found between the two methods for night-time and early-morning conditions. A linear gradient solution sometimes underestimates tension in the bottom of a slab prior to vehicle loading by a factor of three.  相似文献   

18.
Time-resolved electrospray ionization (ESI) mass spectrometry (MS) is a new technique for studying the kinetics of protein folding reactions. It can monitor both changes in the protein conformation and the loss or binding of protein ligands as a function of time. Time-resolved ESI MS was previously used to monitor the acid-induced unfolding of holomyoglobin (hMb). The native form of this protein is characterized by a tightly folded conformation and a heme group that is noncovalently attached to the protein. Acid-induced denaturation induces substantial unfolding of the polypeptide chain and disruption of the heme-protein interactions. In this work, time-resolved ESI MS is used to study the reverse reaction, i.e., reconstitution of acid-denatured hMb. To examine the mechanism and the kinetics of this reaction, a continuous-flow setup with two sequential mixing steps was developed. The data presented in this work show that reconstitution involves the formation of various short-lived intermediates such as tightly folded myoglobin without a heme group and several nativelike forms of the protein that are bound to more than one heme. The occurrence of these transient states is most likely due to the rapid aggregation of free heme in solution.  相似文献   

19.
Xu Y  Feng X  Du W  Liu X  Luo Q  Liu BF 《Analytical chemistry》2008,80(18):6935-6941
In this paper, nonequilibrium capillary electrophoresis (NECE) was attempted for the first time to investigate a dual equilibrium system, where the intramolecular G-quadruplex folding was in competition with the intermolecular duplex formation. Samples of an equilibrium mixture of human telomeric DNA and its complementary strands were separated in capillaries under nonequilibrium conditions without K (+). Polyethylene oxide was added to the running buffer facilitating the separation of single-stranded DNA, duplex, and G-quadruplex. Thus, the folding/unfolding rate constants of the G-quadruplex and the association/dissociation constants of the duplex could be simultaneously derived from the same experiment. Results indicated that the duplex formation induced minimal influence on the G-quadruplex folding. On the basis of the kinetic characterization of the G-quadruplex at varying temperatures, the thermodynamic parameters of the G-quadruplex could also be determined. Thus, the NECE method provided a new avenue for studying the kinetics and thermodynamics of nucleic acids within dual equilibrium systems with significant advantages of extreme-low sample cost (approximately 10 (-18) mol) and high repeatability.  相似文献   

20.
Utility of accurate mass tags for proteome-wide protein identification   总被引:8,自引:0,他引:8  
An enabling capability for proteomics would be the ability to study protein expression on a global scale. While several different separation and analysis options are being investigated to advance the practice of proteomics, mass spectrometry (MS) is rapidly becoming the core instrumental technology used to characterize the large number of proteins that constitute a proteome. To be most effective, proteomic measurements must be high-throughput, ideally allowing thousands of proteins to be identified on a time scale of hours. Most strategies of identification by MS rely on the analysis of enzymatically produced peptides originating from an isolated protein followed by either peptide mapping or tandem MS (MS/MS) to obtain sequence information for a single peptide. In the case of peptide mapping, several peptide masses are needed to unambiguously identify a protein with the typically achieved mass measurement accuracies (MMA). The ability to identify proteins based on the mass of a single peptide (i.e., an accurate mass tag; AMT) is proposed and is largely dependent on the MMA that can be achieved. To determine the MMA necessary to enable the use of AMTs for proteome-wide protein identification, we analyzed the predicted proteins and their tryptic fragments from Saccharomyces cerevisiae and Caenorhabditis elegans. The results show that low ppm (i.e., approximately 1 ppm) level measurements have practical utility for analysis of small proteomes. Additionally, up to 85% of the peptides predicted from these organisms can function as AMTs at sub-ppm MMA levels attainable using Fourier transform ion cyclotron resonance MS. Additional information, such as sequence constraints, should enable even more complex proteomes to be studied at more modest mass measurement accuracies. Once AMTs are established, subsequent high-throughput measurements of proteomes (e.g., after perturbations) will be greatly facilitated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号