共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of supplemental fishmeal in combination with feathermeal at two different proportions in the diet on milk docosahexaenoic acid (DHA) content was investigated. Recently, benefits to human health have been attributed to the consumption of this fatty acid, which is normally present in marine lipids. Six Holstein cows past peak lactation were used in a Latin square design with a 2 x 3 factorial arrangement of treatments. Fish- and feathermeals were prepared as pellets at 4:1 and 1:4 combinations and offered at 3.75, 11.75, and 27% of the diet. The supplements were top-dressed onto a basal diet based on corn silage that was progressively replaced by supplement. Nitrogen balance measures were made during the experiment because of the wide range in crude protein content of experimental diets. Milk protein content increased with level of supplementation in the diet reflecting the protein quality of the supplements used. There was overall higher milk DHA content when cows consumed the supplement containing more fishmeal than feather meal. Milk DHA content increased in a quadratic fashion, as more of either supplement was included in the diet. Apparent transfer efficiency of DHA from diet to milk declined with increasing amount of DHA in the diet. Results from this experiment suggest that transfer of docosahexaenoic acid from diet to milk may depend on diet composition and quantity present in the diet. 相似文献
2.
Consumer acceptability of conjugated linoleic acid-enriched milk and cheddar cheese from cows grazing on pasture 总被引:5,自引:0,他引:5
Khanal RC Dhiman TR Ure AL Brennand CP Boman RL McMahon DJ 《Journal of dairy science》2005,88(5):1837-1847
Two experiments were conducted to study the consumer acceptability attributes of conjugated linoleic acid (CLA)-enriched milk and cheese from cows grazing on pasture. In experiment 1, 15 cows were fed either a diet containing 51% alfalfa hay plus corn silage and 49% concentrate [total mixed ration (TMR)], were grazed on pasture, or were grazed on pasture and received 3.2 kg/d of a grain mix. The grain mix contained 75% full-fat extruded soybeans (FFES), 10% corn, 10% beet pulp, and 5% molasses. During the final 3 wk of the 6-wk experiment, milk was evaluated for sensory attributes. In experiment 2, 18 cows were fed similar diets as in experiment 1, except replacing the group of cows grazed on pasture and receiving the grain mix was a group of cows grazed on pasture and receiving 2.5 kg/d per cow of the FFES; Cheddar cheese was manufactured from milk. Average CLA contents (g/100 g of fatty acid methyl esters) were 0.52, 1.63, and 1.69 in milk and 0.47, 1.47, and 1.46 in cheese from cows fed a TMR, grazed on pasture, and grazed on pasture and fed the grain mix, respectively. An open and trained panel evaluated CLA-enriched milk for mouth-feel, color, flavor, and quality and evaluated cheese for color, flavor, texture, and quality. Open and trained panel evaluations of milk and cheese showed no differences among treatments for any of the attributes, except that the trained panel detected a more barny flavor in milk from cows grazing pasture compared with milk from cows fed the TMR only. Results suggest that consumer acceptability attributes of CLA-enriched milk and cheese from cows grazing pasture is similar to those of milk and cheese with low levels of CLA. 相似文献
3.
Effect of protein-to-fat ratio of milk on the composition, manufacturing efficiency, and yield of cheddar cheese 总被引:1,自引:0,他引:1
Twenty-three Cheddar cheeses were prepared from milks with a protein content of 3.66% (wt/wt) and with different protein-to-fat ratio (PFR) in the range 0.70 to 1.15; the PFR of each milk differed by 0.02. For statistical analysis, the 23 cheeses were divided into 3 PFR groups: low (LPFR; 0.70 to 0.85), medium (MPFR; 0.88 to 1.00) and high (HPFR; 1.01 to 1.15), which were compared using ANOVA. The numbers of PFR values in the LPFR, MPFR, and HPFR groups were 9, 7, and 7, respectively. Data were also analyzed by linear regression analysis to establish potentially significant relationships among the PFR and response variables. Increasing PFR significantly increased the levels of cheese moisture, protein, Ca, and P, but significantly reduced the levels of moisture in nonfat substances, fat-in-DM, and salt-in-moisture. The percentage of milk fat recovered in the LPFR cheese was significantly lower than that in the MPFR or HPFR cheeses. In contrast, the recovery of water from milk to the LPFR cheese was significantly higher than that in the MPFR or HPFR cheeses. Increasing the PFR led to a significant decrease in the actual yield of cheese per 100 kg of milk but a significant increase occurred in the normalized yield of cheese per 100 kg of milk with reference values of fat plus protein (3.4 and 3.3%, wt/wt, respectively). The results demonstrate that alteration of the PFR of cheese milk in the range 0.70 to 1.15 has marked effects on cheese composition, component recoveries, and cheese yield. 相似文献
4.
Three experimental batches of Cheddar cheese were manufactured in duplicate, with standardization of the initial cheese-milk lactose content to high (5.24%), normal (4.72%, control), and low lactose (3.81%). After 35 d of aging at 4.4°C, the cheeses were subjected to temperature abuse (24 h at 21°C, unopened) and contamination (24 h at 21°C, packages opened and cheeses contaminated with crystal-containing cheese). After aging for 167 d, residual cheese lactose (0.08 to 0.43%) and l(+)-lactate concentrations (1.37 to 1.60%) were high and d(−)-lactate concentrations were low (<0.03%) for all cheeses. No significant differences in lactose concentrations were attributable to temperature abuse or contamination. No significant differences in l(+)- or d(−)-lactate concentrations were attributable to temperature abuse. However, concentrations of l(+)-lactate were significantly lower and d(−)-lactate were significantly higher in contaminated cheeses than in control cheeses, indicating inoculation (at d 35) with heterofermentative nonstarter lactic acid bacteria able to racemize l(+)-lactate to d(−)-lactate. The fact that none of the cheeses exhibited crystals after 167 d demonstrates that high cheese milk or residual lactose concentrations do not guarantee crystal formation. Contamination with nonstarter lactic acid bacteria can significantly contribute to d(−)-lactate accumulation in cheese. 相似文献
5.
The objective of this study was to compare the effects of vacuum-condensed (CM) and ultrafiltered (UF) milk on some compositional and functional properties of Cheddar cheese. Five treatments were designed to have 2 levels of concentration (4.5 and 6.0% protein) from vacuum-condensed milk (CM1 and CM2) and ultrafiltered milk (UF1 and UF2) along with a 3.2% protein control. The samples were analyzed for fat, protein, ash, calcium, and salt contents at 1 wk. Moisture content, soluble protein, meltability, sodium dodecyl sulfate-PAGE, and counts of lactic acid bacteria and nonstarter lactic acid bacteria were performed on samples at 1, 18, and 30 wk. At 1 wk, the moisture content ranged from 39.2 (control) to 36.5% (UF2). Fat content ranged from 31.5 to 32.4% with no significant differences among treatments, and salt content ranged from 1.38 to 1.83% with significant differences. Calcium content was higher in UF cheeses than in CM cheeses followed by control, and it increased with protein content in cheese milk. Ultrafiltered milk produced cheese with higher protein content than CM milk. The soluble protein content of all cheeses increased during 30 wk of ripening. Condensed milk cheeses exhibited a higher level of proteolysis than UF cheeses. Sodium dodecyl sulfate-PAGE showed retarded proteolysis with increase in level of concentration. The breakdown of alphas1- casein and alphas1-I-casein fractions was highest in the control and decreased with increase in protein content of cheese milk, with UF2 being the lowest. There was no significant degradation of beta-casein. Overall increase in proteolytic products was the highest in control, and it decreased with increase in protein content of cheese milk. No significant differences in the counts of lactic starters or nonstarter lactic acid bacteria were observed. Extent as well as method of concentration influenced the melting characteristics of the cheeses. Melting was greatest in the control cheeses and least in cheese made from condensed milk and decreased with increasing level of milk protein concentration. Vacuum condensing and ultrafiltration resulted in Cheddar cheeses of distinctly different quality. Although both methods have their advantages and disadvantages, the selection of the right method would depend upon the objective of the manufacturer and intended use of the cheese. 相似文献
6.
Transfer of melamine from feed to milk and from milk to cheese and whey in lactating dairy cows fed single oral doses 总被引:1,自引:0,他引:1
Battaglia M Cruywagen CW Bertuzzi T Gallo A Moschini M Piva G Masoero F 《Journal of dairy science》2010,93(11):5338-5347
A study was conducted to evaluate the excretion pattern, after a single oral dose, of melamine from feed into milk, and the subsequent transfer to cheese and whey. The transfer of cyanuric acid was also investigated. Twenty-four lactating Holstein cows were randomly allocated to 4 treatments and received single doses of melamine as follows: 0.05, 0.50, 5.00, and 50.00 g/cow for groups D1, D2, D3, and D4, respectively. Individual milk samples were collected for melamine and cyanuric acid analyses on d 1, 2, 3, 4, 5, and 7. Milk collected individually from the second milking after melamine ingestion was used to make cheese on a laboratory scale. Melamine and cyanuric acid were extracted using a solid-phase extraction cartridge, and analyses were carried out by liquid chromatography-mass spectrometry/mass spectrometry. Maximal melamine concentrations occurred between 6 and 18 h after treatment and increased with log dose (linear and quadratic), ranging from 0.019 to 35.105 mg/kg. More than 60% of the melamine that was transferred to the milk was observed within 30 h after melamine ingestion. Melamine was not detected (limit of detection was 0.002 mg/kg) in milk 5 d after treatment in group D1, and 7 d after treatment in groups D2, D3, and D4. Blood urea nitrogen was not influenced by melamine ingestion. During cheese making, melamine was transferred mainly to the whey fraction. Cyanuric acid was not detected in any of the samples (milk, cheese, or whey). The excretion pattern of melamine in milk and whey may represent a health concern when cows ingest more than 0.50 g of melamine/d. However, only at intake levels of 5 and 50 g/d did cheese exceed the limits as set forth by the European Union. The results confirmed that melamine contamination of milk and milk products may be related not only to direct contamination, but also to adulteration of animal feeds. 相似文献
7.
Buffalo milk Cheddar cheese samples of different ages were analysed for compositional attributes (CA), ripening indices (RI) and Instron Textural Profile (ITP). All samples were compositionally alike, except for pH and salt-in-moisture (SM) contents. RI showed significant variations. CA and RI showed highly significant correlations within themselves and with each other, except for moisture with pH, SM with moisture, MNFS, Fat and FDM and Fat with MNFS. The ITPs of cheeses showed significant variations and had highly significant intercorrelations indicating their interdependence. CA (except moisture and MNFS) and RI showed a highly significant correlationship with ITPs. Moisture content showed a highly significant correlationship with all ITPs, except cohesiveness and springiness, where it was significant. MNFS content showed significant correlations only with hardness and brittleness. Stepwise regression analysis revealed that MI was the most predominant factor influencing cheese texture, followed by pH, SM, FDM and TVFA. Knowing Ca and RI, the textural properties of cheeses can be forecast through mathematical equations. Similarly the age of cheese can also be predicted if RI and/or textural properties are known. 相似文献
8.
High Pressure (HP) treatment of milk prior to cheese-making was shown to increase the yield of cheese due to increased protein and moisture retention in cheese. Cheeses were made with raw milk or milk treated with high temperature short-time (HTST) pasteurization, and HP treatments at two levels (483 and 676 MPa) at 10 °C, 483 MPa HP at 30 °C, and 483 MPa HP at 40 °C. Cheese yield, total solids, protein, fat and salt contents were evaluated, and fat and protein recovery indices were calculated. Cheeses from HP treatments of 676 MPa at 10 °C and 483 MPa at 30 °C exhibited wet yields of 11.40% and 11.54%, respectively. Protein recovery was 79.9% for HP treatment of 676 MPa at 10 °C. The use of slightly higher pressurization temperatures increased moisture retention in cheese. Visco-elasticity of cheeses was determined by dynamic oscillatory testing and a creep-recovery test. Rheological parameters such as loss (G″) and storage (G′) moduli were dependent on oscillation frequency. At high (173 rad/s) and low (2.75 rad/s) angular frequencies, cheeses made from milk treated at 483 MPa at 10 °C behaved more solid-like than other treatments. Creep tests indicated that cheeses from milk treated with 483 MPa HP at 10 °C showed the smallest instantaneous compliance (Jo), confirming the more solid-like behavior of cheese from the 483 MPa at 10 °C treatment compared to the behavior of cheeses from other treatments. Cheeses made with pasteurized milk were more deformable, exhibited less solid-like behavior than cheeses made with HP treated milk, as shown by the Jo value. With more research into bacteriological implications, HP treatment of raw milk can augment Cheddar cheese yield with better curd formation properties. 相似文献
9.
The evolution of free fatty acids (FFA) was monitored over 168 d of ripening in Cheddar cheeses manufactured from good quality raw milk (RM), thermized milk (TM; 65°C × 15 s), and pasteurized milk (PM; 72°C × 15 s). Heat treatment of the milk reduced the level and diversity of raw milk microflora and extensively or wholly inactivated lipoprotein lipase (LPL) activity. Indigenous milk enzymes or proteases from RM microflora influenced secondary proteolysis in TM and RM cheeses. Differences in FFA in the RM, TM, and PM influenced the levels of FFA in the subsequent cheeses at 1 d, despite significant losses of FFA to the whey during manufacture. Starter esterases appear to be the main contributors of lipolysis in all cheeses, with LPL contributing during production and ripening in RM and, to a lesser extent, in TM cheeses. Indigenous milk microflora and nonstarter lactic acid bacteria appear to have a minor contribution to lipolysis particularly in PM cheeses. Lipolytic activity of starter esterases, LPL, and indigenous raw milk microflora appeared to be limited by substrate accessibility or environmental conditions over ripening. 相似文献
10.
Preacidification of milk for cheese making may have a beneficial impact on increasing proteolysis during cheese aging. Unlike other acids, CO(2) can easily be removed from whey. The objectives of this work were to determine the effect of milk preacidification on Cheddar cheese composition, the recovery of individual milk components, and yield. Carbon dioxide was injected inline after the cooling section of the pasteurizer. Cheeses with and without added CO(2) were made simultaneously from the same batch of milk. This procedure was replicated 3 times. Carbon dioxide in the cheese milk was about 1600 ppm, which resulted in a milk pH of about 5.9 at 31 degrees C. The starter culture and coagulant addition rates were the same for both the CO(2) treatment and the control. The whey pH at draining of the CO(2) treatment was lower than the control. Total make time was shorter for the CO(2) treatment compared with the control. Cheese manufactured from milk acidified with CO(2) retained less of the total calcium and fat than the control cheese. The higher fat loss was primarily in the whey at draining. Preacidification with CO(2) did not alter the crude protein recovery in the cheese. The CO(2) treatment resulted in a higher added salt recovery in the cheese and produced a cheese that contained too much salt. Considering the higher added salt retention, the salt application rate could be lowered to achieve a typical cheese salt content. Cheese yield efficiency of the CO(2) treated milk was 4.4% lower than the control due to fat loss. Future work will focus on modifying the make procedure to achieve a normal fat loss into the whey when CO(2) is added to milk. 相似文献
11.
Impact of milk preacidification with CO2 on the aging and proteolysis of cheddar cheese 总被引:1,自引:0,他引:1
To determine the influence of milk preacidification with CO(2) on Cheddar cheese aging and proteolysis, cheese was manufactured from milk with and without added CO(2). The experiment was replicated 3 times. Carbon dioxide (approximately 1600 ppm) was added to the cold milk, resulting in a milk pH of 5.9 at 31 degrees C in the cheese vat. The starter and coagulant usage rates were equal for the control and CO(2) treatment cheeses. The calcium content of the CO(2) treatment cheese was lower, but no difference in moisture content was detected. The higher CO(2) content of the treatment cheeses (337 vs. 124 ppm) was maintained throughout 6 mo of aging. In spite of having almost one and a half times the salt-in-moisture, proteolysis as measured by pH 4.6 and 12% trichloroacetic acid soluble nitrogen expressed as percentages of total nitrogen, was higher in the CO(2) treatment cheeses throughout aging. The ratio of alpha(s)-casein (CN) to para-kappa-CN decreased faster in the CO(2) treatment cheeses than in the control cheeses, especially before refrigerated storage. No difference was detected in the ratio of beta-CN to para-kappa-CN between the control and CO(2) treatment cheeses. Intact alpha(s)- and beta-CN were found in the expressible serum (ES) from the CO(2) treatment cheese as well as alpha(s1)-I-CN, but they were not detected in the ES from the control cheese. No CN was detected in the ES from the curd before the salting of either the control or CO(2) treatment cheese. Higher proteolysis in the cheese made from milk preacidified with CO(2) may have been due to increased substrate availability in the water phase or increased chymosin activity or retention in the cheese. 相似文献
12.
Mattos R Staples CR Williams J Amorocho A McGuire MA Thatcher WW 《Journal of dairy science》2002,85(4):755-764
The primary objective was to determine whether the dietary polyunsaturated fatty acids, eicosapentaenoic (EPA, C20:5, n-3) and docosahexaenoic (DHA, C22:6, n-3), present in fish meal (FM) can attenuate uterine secretion of PGF2alpha in response to a challenge with estradiol and oxytocin in lactating dairy cows. Cycling multiparous cows (n = 32) were fed diets containing 0 (OFM), 2.6 (2.6FM), 5.2 (5.2FM), or 7.8% menhaden FM (7.8FM). The diet consisting of 7.8FM also contained fish oil (0.28% of dietary dry matter) to increase intake of EPA and DHA. Average dry matter intake was 24.9 kg/d and unaffected by diet. Combined intakes of EPA and DHA averaged 0, 12.8, 24.1, and 54.0 g/d from the OFM, 2.6FM, 5.2FM, and 7.8FM diets, respectively. At 30 to 34 d after initiation of dietary treatments, cows received an i.m. injection of 100 microg of GnRH followed by i.m. administration of 25 and 15 mg of PGF2alpha after 7 and 8 d, respectively. Synchronous ovulation was induced by an injection of 3000 IU of human chorionic gonadotropin (hCG) given 24 h later on d 9. Subsequent luteal phase increases in plasma progesterone concentrations did not differ (0.88 ng/ml per day). At 15 d after hCG injection, cows were injected with estradiol-17beta (3 mg, i.v.) at 0900 h and oxytocin (100 IU, i.v.) at 1300 h. Plasma PGF2alpha metabolite concentrations after oxytocin injection were reduced in cows fed diets containing FM compared with those fed OFM. Milk production (39.1 kg/d) and concentrations of fat, protein, or urea nitrogen in milk were not affected by diet. Feeding fish meal and fish oil containing eicosapentaenoic acid and docosahexaenoic acid reduced the proportion of n-6 fatty acids and increased that of n-3 fatty acids in milk in a dose-responsive manner. 相似文献
13.
The effect of natural cheddar cheese ripening on the functional and textural properties of the processed cheese manufactured therefrom 总被引:2,自引:0,他引:2
ABSTRACT: Cheddar cheese ripened at 8 °C was sampled at 7, 14, 28, 56, 112, and 168 d and subsequently used for the manufacture of processed cheese. The cheddar cheese samples were analyzed throughout ripening for proteolysis while the textural and rheological properties of the processed cheeses (PCs) were studied. The rate of proteolysis was the greatest in the first 28 d of cheddar cheese ripening but began to slow down as ripening progressed from 28 to 168 d. A similar trend was observed in changes to the texture of the PC samples, with the greatest decrease in hardness and increase in flowability being in the first 28 d of ripening. Confocal scanning laser microscopy showed that the degree of emulsification in the PC samples increased as the maturity of the cheddar cheese ingredient increased from 7 to 168 d. This increased emulsification resulted in a reduction in the rate of softening in the PC in samples manufactured from cheddar cheese bases at later ripening times. Multivariate data analysis was performed to summarize the relationships between proteolysis in the cheddar cheese bases and textural properties of the PC made therefrom. The proportion of α s 1 -casein (CN) in the cheddar cheese base was strongly correlated with hardness, adhesiveness, fracturability, springiness, and storage modulus values for the corresponding PC. Degradation of α s 1 -CN was the proteolytic event with the strongest correlation to the softening of PC samples, particularly those manufactured from cheddar cheese in the first 28 d of ripening. 相似文献
14.
Baer RJ Ryali J Schingoethe DJ Kasperson KM Donovan DC Hippen AR Franklin ST 《Journal of dairy science》2001,84(2):345-353
A control diet and a fish oil diet were fed to 12 multiparous Holstein cows to determine how the incorporation of Menhaden fish oil in the diet would influence the fatty acid composition, especially the conjugated linoleic acid and transvaccenic acid, contents of milk and butter. The control diet consisted of a 50:50 ratio of forage to concentrate, and the fish oil diet consisted of the control diet with 2% (on a dry matter basis) added fish oil. Milk from cows fed the control diet contained higher average concentrations of milk fat (3.37%) compared with milk from cows fed the fish oil diet (2.29%). Milk from cows fed fish oil contained higher concentrations of conjugated linoleic acid, transvaccenic acid, and total unsaturated fatty acids (0.68 and 2.51; 1.42 and 6.28; and 30.47 and 41.71 g/100 g of fat, respectively). Butter made from the fish oil diet milk also had higher concentrations of conjugated linoleic acid, transvaccenic acid, and unsaturated fatty acids. Penetrometer readings indicated fish oil diet butters were softer at 4 and 20 degrees C than the control diet butters. Acid degree values were similar in the fish oil butters compared with the control butters. No significant difference was found in the flavor characteristics of milk and butter from cows fed the control and fish oil diets. Production of milk and butter with increased amounts of conjugated linoleic acid, transvaccenic acid, and other beneficial fatty acids may have a desirable impact on the health of consumers and lead to increased sales. 相似文献
15.
The changes in proteolysis, calcium (Ca) equilibrium, and functional properties of natural Cheddar cheeses during ripening and the resultant processed cheeses were investigated. For natural Cheddar cheeses, the majority of the changes in pH 4.6 soluble nitrogen as a percentage of total nitrogen (pH 4.6 SN/TN) and the soluble Ca content occurred in the first 90 d of ripening, and subsequently, the changes were slight. During ripening, functional properties of natural Cheddar cheeses changed, that is, hardness decreased, meltability was improved, storage modulus at 70 °C (G'T=70) decreased, and the maximum tan delta (TDmax) increased. Both pH 4.6 SN/TN and the soluble Ca were correlated with changes in functional properties of natural Cheddar cheeses during ripening. Kendall's partial correlation analysis indicated that pH 4.6 SN/TN was more significantly correlated with changes in hardness and TDmax. For processed cheeses manufactured from natural Cheddar cheeses with different ripening times, the soluble Ca content did not show significant difference, and the trends of changes in hardness, meltability, G'T=70, and TDmax were similar to those of natural Cheddar cheeses. Kendall's partial correlation analysis suggested that only pH 4.6 SN/TN was significantly correlated with the changes in functional properties of processed cheeses. 相似文献
16.
A.I. Nájera M.A. Bustamante M. Albisu I. Valdivielso G. Amores N. Mandaluniz J. Arranz L.J.R. Barron M. de Renobales 《Journal of dairy science》2017,100(9):6962-6971
The aim of the present study was to evaluate the influence of rapeseed oilcake used for feeding sheep on the content of fatty acids (FA), tocopherols, retinoids, and cholesterol of milk and cheese, and on the sensory properties of cheese. Indoor animal feeding (in winter) is the highest cost of production for cheesemakers, and the inclusion of locally produced rapeseed oilcake in the concentrate feed formulation can reduce the cost of cheese production, as long as the quality of the cheese is not altered. The experiment was carried out in March (mid lactation) with 72 Latxa sheep from an experimental farm located in the Basque Country (northern Spain). Two homogeneous groups of animals (n = 36) were set to receive each a different diet based on commercial or rapeseed concentrate, respectively, and forage (Festuca hay). Animal production parameters were individually recorded for each feeding group, whereas bulk milk from each group was used for cheesemaking trials. The rapeseed concentrate had higher amounts of unsaturated FA (mainly C18:1 cis isomers, C18:2 cis-9,cis-12 and C18:3 cis-9,cis-12,cis-15) and tocopherols than the commercial concentrate. The inclusion of rapeseed oilcake in the diet of dairy sheep did not compromise animal production parameters or milk gross composition. Bulk milk and cheese from sheep fed rapeseed concentrate showed higher content of unsaturated FA and tocopherols than those from sheep fed commercial concentrate. No differences were observed in the content of retinoid in milk and cheese between feeding groups, whereas the cholesterol content was slightly lower in cheese made with milk from sheep fed rapeseed concentrate. Thus, milk and cheese from sheep fed rapeseed concentrate had a healthier lipid profile. In addition, the inclusion of rapeseed oilcake in the diet of sheep did not change the typical sensory attributes of Protected Denomination of Origin Idiazabal cheese. Therefore, rapeseed concentrate could be a good local resource for feeding sheep to improve the nutritional quality of dairy products and to provide higher returns to farms. 相似文献
17.
Milk and cheese from cows fed calcium salts of palm and fish oil alone or in combination with soybean products 总被引:1,自引:0,他引:1
Allred SL Dhiman TR Brennand CP Khanal RC McMahon DJ Luchini ND 《Journal of dairy science》2006,89(1):234-248
Twenty cows were used in a randomized block design experiment for 6 wk to determine the influence of feeding partial ruminally inert Ca salts of palm and fish oil (Ca-PFO), alone or in combination with extruded full-fat soybeans or soybean oil, on milk fatty acid (FA) methyl esters composition and consumer acceptability of milk and Cheddar cheese. Cows were fed either a diet containing 44% forage and 56% concentrate (control) or a diet supplemented with 2.7% Ca-PFO (FO), 5% extruded full-fat soybeans + 2.7% Ca-PFO (FOESM), or 0.75% soybean oil + 2.7% Ca-PFO (FOSO). Total dietary FA content in the control, FO, FOESM, and FOSO diets were 4.61, 6.28, 6.77, and 6.62 g/100 g, respectively. There was no difference in nutrient intake, milk yield, or milk composition among treatments. Conjugated linoleic acid (CLA) C18:2cis-9, trans-11 isomer, C18:1trans-11 (VA), and total n-3 FA in milk from cows on the control, FO, FOESM, and FOSO treatments were 0.56, 1.20, 1.36, and 1.74; 3.29, 4.66, 6.34, and 7.81; 0.62, 0.69, 0.69, and 0.67 g/100 g of FA, respectively. Concentrations of CLA, VA, and total n-3 FA in cheese were similar to milk. A trained sensory panel detected no difference in flavors of milk and cheese, except for acid flavor below a slightly perceptible level in cheese from all treatments. Results suggest that feeding Ca-PFO alone or in combination with extruded full-fat soybeans or soybean oil enhanced the CLA, VA, total unsaturated and n-3 FA in milk and cheese without negatively affecting cow performance and consumer acceptability characteristics of milk and cheese. 相似文献
18.
Full fat, milled-curd Cheddar cheeses (2 kg) were manufactured with 0.0 (control), 0.1, 1.0, or 10.0 μmol of pepstatin (a potent competitive inhibitor of chymosin) added per liter of curds/whey mixture at the start of cooking to obtain residual chymosin levels that were 100, 89, 55, and 16% of the activity in the control cheese, respectively. The cheeses were ripened at 8°C for 180 d. There were no significant differences in the pH values of the cheeses; however, the moisture content of the cheeses decreased with increasing level of pepstatin addition. The levels of pH 4.6-soluble nitrogen in the 3 cheeses with added pepstatin were significantly lower than that of the control cheese at 1 d and throughout ripening. Densitometric analysis of urea-PAGE electro-phoretograms of the pH 4.6-insoluble fractions of the cheese made with 10.0 μmol/L of pepstatin showed complete inhibition of hydrolysis of αS1-casein (CN) at Phe23-Phe24 at all stages of ripening. The level of insoluble calcium in each of 4 cheeses decreased significantly during the first 21 d of ripening, irrespective of the level of pepstatin addition. Concurrently, there was a significant reduction in hardness in each of the 4 cheeses during the first 21 d of ripening. The softening of texture was more highly correlated with the level of insoluble calcium than with the level of intact αS1-CN in each of the 4 cheeses early in ripening. It is concluded that hydrolysis of αS1-CN at Phe23-Phe24 is not a prerequisite for softening of Cheddar cheese during the early stages of ripening. We propose that this softening of texture is principally due to the partial solubilization of colloidal calcium phosphate associated with the para-CN matrix of the curd. 相似文献
19.
SAHAR NAVIDGHASEMIZAD JAVAD HESARI PER SARIS MOHAMMAD REZA NAHAEI 《International Journal of Dairy Technology》2009,62(2):260-264
The lactic acid bacteria contributing to Lighvan cheese ripening during the different stages of production were investigated. Isolated strains from different culture media were identified phenotypically to species and subspecies level. In total, 413 strains were isolated from raw milk, 1-day-old cheese and fully ripened cheese. The most abundant species belonged to Enterococcus faecium (87 isolates), Lactococcus lactis ssp. lactis (68 isolates), Enterococcus faecalis (55 isolates) and Lactobacillus plantarum (48 isolates). E. faecium, Lc. lactis and Lb. plantarum were the predominantly isolated strains from ripened cheese. Therefore, they may contribute considerably to the aroma and flavour development of Lighvan cheese. 相似文献
20.
Coppa M Ferlay A Monsallier F Verdier-Metz I Pradel P Didienne R Farruggia A Montel MC Martin B 《Journal of dairy science》2011,94(3):1132-1145
The objective of this work was to compare milk fatty acid (FA) profile and texture and appearance of Cantal cheeses obtained from cows grazing 2 different upland grasslands: a highly diversified pasture (74 species) of area 12.5 ha managed under continuous mode (C), and a weakly diversified pasture (31 species) of area 7.7 ha (an old temporary grassland) managed under rotational mode (R). A control group of cows fed a hay-based diet (indoors, I) was used. Three equivalent groups of 12 Montbéliarde cows underwent the 3 treatments from May to September 2008. The cheeses were manufactured during 3 consecutive days in early June, early July, and late August (27 cheeses in all). The texture, appearance, and chemical composition of the cheeses were determined after 12 wk of ripening. Concentrations of total saturated FA and monounsaturated FA were higher and lower, respectively, in I milks compared with pasture milks. The concentrations of trans-11-C18:1 and cis-9-C18:1, and polyunsaturated FA as well as yellowness decreased during the season in C-derived milk but remained constant in R-derived milk, through a combined effect of grass development stage and the cows’ grazing selection. The I cheeses were, on average, firmer, less creamy, less elastic, and less yellow than the pasture cheeses. Decreasing and increasing trends in texture firmness during the season were observed for C and R cheeses, respectively. The rind of the pasture-fed cow cheese had fewer, less intensely colored, and less prominent spots than did that of I cheeses. This difference was probably due to greater migration of fat to the rind during pressing because of the lower fat melting point of the pasture-fed cow cheeses, which had higher unsaturated FA content. The greater amounts of fat deposited on the rind of the pasture-fed cow cheeses may have partially inhibited the microbial activity responsible for rind appearance. Our trial underlines the importance of the effects of grazing management associated with vegetation type on milk and cheese characteristics. 相似文献