首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to the simultaneously superior optical transmittance and low electrical resistivity, transparent conductive electrodes play a significant role in semiconductor electronics. To enhance the electrical properties of these films, one approach is thickness increment which degrades the optical properties. However, a preferred way to optimize both electrical and optical properties of these layers is to introduce a buffer layer. In this work, the effects of buffer layer and film thickness on the structural, electrical, optical and morphological properties of AZO thin films are investigated. Al-doped zinc oxide (AZO) is prepared at various thicknesses of 100 to 300 nm on the bare and 100 nm-thick indium tin oxide (ITO) coated glass substrates by radio frequency sputtering. Results demonstrate that by introducing ITO as a buffer layer, the average values of sheet resistance and strain within the film are decreased (about 76 and 3.3 times lower than films deposited on bare glasses), respectively. Furthermore, the average transmittance of ITO/AZO bilayer is improved nearly 10% regarding single AZO thin film. This indicates that bilayer thin films show better physical properties rather than conventional monolayer thin films. As the AZO film thickness increases, the interplanar spacing, d(002), strain within the film and compressive stress of the film in the hexagonal lattice, decreases indicating the higher yield of AZO crystal. Moreover, with the growth in film thickness, carrier concentration and optical band gap (Eg) of AZO film are increased from 4.62?×?1019 to 8.21?×?1019 cm?3 and from 3.55 to 3.62 eV, respectively due to the Burstein-Moss (BM) effect. The refractive index of AZO thin film is obtained in the range of 2.24–2.26. With the presence of ITO buffer layer, the AZO thin film exhibits a resistivity as low as 6?×?10?4 Ω cm, a sheet resistance of 15 Ω/sq and a high figure of merit (FOM) of 1.19?×?104 (Ω cm)?1 at a film thickness of 300 nm. As a result, the quality of AZO thin films deposited on ITO buffer layer is found to be superior regarding those grown on a bare glass substrate. This study has been performed over these two substrates because of their significant usage in the organic light emitting diodes and photovoltaic applications as an enhanced carrier injecting electrodes.  相似文献   

2.
Cost efficient and large area deposition of superior quality Al2O3 doped zinc oxide (AZO) films is instrumental in many of its applications, including solar cell fabrication due to its numerous advantages over indium tin oxide (ITO) films. In this study, AZO films were prepared by a highly efficient rotating cylindrical direct current (DC) magnetron sputtering system using an AZO target, which has a target material utilization above 80%, on glass substrates in argon (Ar) ambient. A detailed analysis on the electrical, optical, and structural characteristics of AZO thin films was performed for the solar cell, as well as display applications. The properties of films were found to critically depend on deposition parameters, such as sputtering power, substrate temperature, working pressure, and film thickness. A low resistivity of ~ 5.5 × 10− 4 Ω cm was obtained for films deposited at 2 kW, keeping the pressure, substrate temperature and thickness constant at 3 mTorr, 230 °C and ~ 1000 nm respectively. This was due to an increase in carrier mobility and large grain size. Mobility is found to be controlled by ionized impurity scattering within the grains, since the mean free path of carriers is much smaller than the grain size of the films. The AZO films showed a high transparency of ~ 90% in the long wavelength region. Our results offer a cost-efficient AZO film deposition method that can fabricate films with significant low resistivity and high transmittance that can be applied in thin-film solar cells, as well as thin film transistor (TFT) and non-volatile memory (NVM).  相似文献   

3.
《Thin solid films》2006,515(2):567-570
It has been reported that a small amount of hydrogen in argon plasma induces an increase in the crystallite size of the as-deposited films. In addition, control of the hydrogen partial pressure is expected to improve the carrier mobility by increasing the crystallinity of the film (larger crystal size and lower grain boundary effects). Al doped ZnO (AZO) films were deposited by co-CFUBM (closed field unbalanced magnetron) sputtering. The ultimate aim was to deposit transparent films on a polymer substrate with a low electrical resistivity. Therefore, the structural, optical and electrical properties of AZO films were investigated as a function of the hydrogen partial pressure. A minimum resistivity and maximum transparency of 8 × 10 4 Ω cm and 88.1% were obtained, respectively. A critical PH2 was expected to improve the carrier mobility by increasing the crystallinity of the film. However, above this value, conductivity reduced due to the formations of oxides such as ZnO and Al2O3 in the AZO films.  相似文献   

4.
Transparent conductive multilayer Al-doped ZnO (AZO) films were prepared by the spin-on technique with rapid thermal annealing process at low temperature. The effects of annealing temperature and thickness on microstructure, growth behavior, electrical properties and optical properties of AZO films were investigated. It was found that AZO films exhibited stronger preferred c-axis-orientation, the electrical resistivity decreased as it would be expected with the increase of annealing temperature from 400 to 500 °C and the increase of the number of layers in the film from 1 to 6, but the electrical resistivity tended to keep at a certain lowest value of 2.7 × 10−4 Ω cm when the annealing temperature was above 500 °C and the number of layers did not exceed 6. The average optical transmittance of AZO films was over 90% when number of layers in the film did not exceed 4 and decreased as this number increases, but the annealing temperature had little effect on the average optical transmittance of AZO films.  相似文献   

5.
Highly conducting tri-layer films consisting of a Cu layer sandwiched between Al-doped ZnO (AZO) layers (AZO/Cu/AZO) were prepared on glass substrates at room temperature by radio frequency (RF) magnetron sputtering of AZO and ion-beam sputtering of Cu. The tri-layer films have superior photoelectric properties compared with the bi-layer films (Cu/AZO, AZO/Cu) and single AZO films. The effect of AZO thickness on the properties of the tri-layer films was discussed. The X-ray diffraction spectra show that all films are polycrystalline consisting of a Cu layer with the cubic structure and two AZO layers with the ZnO hexagonal structure having a preferred orientation of (0 0 2) along the c-axis, and the crystallite size and the surface roughness increase simultaneously with the increase of AZO thickness. When the AZO thickness increases from 20 to 100 nm, the average transmittance increases initially and then decreases. When the fixed Cu thickness is 8 nm and the optimum AZO thickness of 40 nm was found, a resistivity of 7.92 × 10−5 Ω cm and an average transmittance of 84% in the wavelength range of visible spectrum of tri-layer films have been obtained. The merit figure (FTC) for revaluing transparent electrodes can reach to 1.94 × 10−2 Ω−1.  相似文献   

6.
Al-doped zinc oxide (AZO) transparent, conductive thin films were deposited on inexpensive polyethylene terephthalate substrates, using radio frequency (rf) magnetron sputtering, with an AZO ceramic target (the Al2O3 content is approximately 2 wt%). This paper presents an effective method for the optimization of the parameters for the deposition process for AZO thin films with multiple performance characteristics, using the Taguchi method, combined with grey relational analysis. Using the Taguchi quality design concept, an L9 orthogonal array was chosen for the experiments. The effects of various process parameters (rf power, substrate-to-target distance, substrate temperature and deposition time) on the electrical, structural, morphological and optical properties of AZO films were investigated. In the confirmation runs, using grey relational analysis, the electrical resistivity of the AZO films was found to have decreased from 5.0?×?10?3 to 1.6?×?10?3?Ω-cm and the optical transmittance was found to have increased from 74.39 to 79.40%. The results demonstrate that the Taguchi method combined with grey relational analysis is an economical way to obtain the multiple performance characteristics of AZO films with the fewest experimental data. Additionally, by applying an Al buffer layer, of thickness 10?nm, the results show that the electrical resistivity was 3.1?×?10?4?Ω-cm and the average optical transmittance, in the visible part of the spectrum, was approximately 79.12%.  相似文献   

7.
Transparent and conductive Al-doped ZnO (AZO) thin films were deposited on substrates including alkali-free glass, quartz glass, Si, and SiO2 buffer layer on alkali-free glass by using radio frequency magnetron sputtering. The effects of different substrates on the structural, electrical and optical properties of the AZO films were investigated. It was found that the crystal structures were remarkably influenced by the type of the substrates due to their different thermal expansion coefficients, lattice mismatch and flatness. The AZO film (100 nm in thickness) deposited on the quartz glass exhibited the best crystallinity, followed sequentially by those deposited on the Si, the SiO2 buffer layer, and the alkali-free glass. The film deposited on the quartz glass showed the lowest resistivity of 5.14 × 10− 4 Ω cm among all the films, a carrier concentration of 1.97 × 1021 cm− 3 and a Hall mobility of 6.14 cm2/v·s. The average transmittance of this film was above 90% in the visible light spectrum range. Investigation into the thickness-dependence of the AZO films revealed that the crystallinity was improved with increasing thickness and decreasing surface roughness, accompanied with a decrease in the film resistivity.  相似文献   

8.
Aluminum doped zinc oxide (AZO) films were prepared at room temperature by ion beam co-sputtering system under various oxygen partial pressures. The structural, electrical, and optical properties of the films were studied by XRD, XPS, Hall measurement, and spectrometer. The AZO film with low resistivity, 7.8 × 10?4 Ω cm, and high transparency, ~80 %, was obtained at the optimum oxygen partial pressure of 1.3 × 10?4 Torr and the intense (002) diffraction peak was observed simultaneously. Different optical band gaps observed in the films prepared under various oxygen partial pressures are closely related to the carrier concentrations in the films. Three O1s components were applied to fit the XPS O1s spectra. They consist of adsorbed oxygen species, oxygen in O-Zn bonds surrounded by oxygen vacancies, and oxygen in the O-Zn bonds. Two components, Zn in Zn–O bonds and Zn with higher than +2 oxidation states, were used to fit Zn2p3/2 spectra. It was found that the increase of film’s resistivity which may result from the drops in the oxygen vacancy, Zn interstitial, carrier concentration, and grain size. No apparent transmission change of the film in the visible light region as a function of oxygen partial pressure was detected.  相似文献   

9.
In transparent conducting impurity-doped ZnO thin films prepared on glass substrates by a dc magnetron sputtering (dc-MS) deposition, the obtainable lowest resistivity and the spatial resistivity distribution on the substrate surface were improved by a newly developed MS deposition method. The decrease of obtainable lowest resistivity as well as the improvement of spatial resistivity distribution on the substrate surface in Al- or Ga-doped ZnO (AZO or GZO) thin films were successfully achieved by inserting a very thin buffer layer, prepared using the same MS apparatus with the same target, between the thin film and the glass substrate. The deposition of the buffer layer required a more strongly oxidized target surface than possible to attain during a conventional dc-MS deposition. The optimal thickness of the buffer layer was found to be about 10 nm for both GZO and AZO thin films. The resistivity decrease is mainly attributed to an increase of Hall mobility rather than carrier concentration, resulting from an improvement of crystallinity coming from insertion of the buffer layer. Resistivities of 3 × 10− 4 and 4 × 10− 4Ω cm were obtained in 100 nm-thick-GZO and AZO thin films, respectively, incorporating a 10 nm-thick-buffer layer prepared at a substrate temperature around 200 °C.  相似文献   

10.
《Thin solid films》1986,135(2):183-187
The stability of the electrical, optical and mechanical properties of sputtered aluminium-doped ZnO (AZO) films with a resistivity from 10-3 to 10-4 Ω cm was investigated. No significant change in these properties of AZO films was observed for use in air at room temperature for 1 year. It is shown that stable properties for use in vacuum and inert and nitrogen gases at temperatures as high as 400°C can be attained for AZO films sputtered with an Al2O3 content above 1.0 wt.%. After heat treatment in air at 400°C, the resistivity of AZO films increases by about five orders of magnitude. The resistivity can be returned to that of the as-deposited state by heat treatment in hydrogen gas at a temperature near 400°C.  相似文献   

11.
β-FeSi2 can be used for various optoelectronic devices owing to its superior material features including high optical absorption coefficient and direct band gap of about 0.8 eV. Due to its high refractive index (>5.6), however, suitable antireflection coating (ARC) is necessary for practical device applications. In order to increase the effective areas of optoelectronic devices, transparent electrodes should be also developed. In this work, Al-doped ZnO (AZO) films were fabricated by sputtering on β-FeSi2 thin films and were found suitable for both transparent electrodes and ARC films. Choosing optimum substrate temperature and sputtering rate, high quality AZO films were formed. The conductivity of AZO films was as high as 3×103 S/cm and ohmic contact was easily achieved between AZO and β-FeSi2 films, indicating AZO film as an ideal transparent electrode for β-FeSi2. The transmittance of 400-nm-thick AZO films was >80% and >70% in the wavelength ranges 400-1400 and 1400-1600 nm, respectively. By changing the thickness of AZO film, the central wavelength of minimum reflectance was adjusted to 1550 nm where the total reflectance of AZO/β-FeSi2/Si structure was reduced below 2%.  相似文献   

12.
Akihiko Kono 《Vacuum》2009,84(5):625-628
A hot-cathode plasma sputtering technique was used for fabricating the highly transparent and conducting aluminum-doped zinc oxide (AZO) films on glass substrates from a disk-shaped AZO (Al2O3: 2 wt.%) target. Under particular conditions where the target voltage was VT = −200 V and the plasma excitation pressure was PS = 1.5 × 10−3 Torr, the lowest resistivity of 4.2 × 10−4 Ω cm was obtained at 400 nm, and this was associated with a carrier density of 8.7 × 1020 cm−3 and a Hall mobility of 17 cm2/V s. From the annealing experiment of the AZO films in the oxygen and nitrogen gases of the atmospheric pressure it was revealed that both the oxygen vacancies and the grain boundaries in the polycrystalline AZO film played an important role in the electrical properties of the film.  相似文献   

13.
The present status and prospects for further development of reduced or indium-free transparent conducting oxide (TCO) materials for use in practical thin-film transparent electrode applications such as liquid crystal displays are presented in this paper: reduced-indium TCO materials such as ZnO-In2O3, In2O3-SnO2 and Zn-In-Sn-O multicomponent oxides and indium-free materials such as Al- and Ga-doped ZnO (AZO and GZO). In particular, AZO thin films, with source materials that are inexpensive and non-toxic, are the best candidates. The current problems associated with substituting AZO or GZO for ITO, besides their stability in oxidizing environments as well as the non-uniform distribution of resistivity resulting from dc magnetron sputtering deposition, can be resolved. Current developments associated with overcoming the remaining problems are also presented: newly developed AZO thin-film deposition techniques that reduce resistivity as well as improve the resistivity distribution uniformity using high-rate dc magnetron sputtering depositions incorporating radio frequency power. In addition, stability tests of resistivity in TCO thin films evaluated in air at 90% relative humidity and 60 °C have demonstrated that sufficiently moisture-resistant AZO thin films can be produced at a substrate temperature below 200 °C when the film thickness was approximately 200 nm. However, improving the stability of AZO and GZO films with a thickness below 100 nm remains a problem.  相似文献   

14.
To obtain a suitable sputtering target for depositing transparent conducting Al-doped ZnO (AZO) films by using direct current (DC) magnetron sputtering, this study investigates the possibility of using atmosphere controlled sintering of Al2O3 mixed ZnO powders to prepare highly conductive ceramic AZO targets. Experimental results show that a gas mixture of Ar and CO could produce a sintered target with resistivity in the range of 2.23 × 10− 4 Ω cm. The fairly low resistivity was mainly achieved by the formation of both aluminum substitution (AlZn) and oxygen vacancy (VO), thus greatly increasing the carrier concentration. Compared to usual air sintered target, the thin film deposited by the Ar + CO sintered target exhibited lower film resistivity and more uniform spatial distribution of resistivity. A film resistivity as low as 6.8 × 10− 4 Ω cm was obtained under the sputtering conditions of this study.  相似文献   

15.
Sun Yanfeng  He Zhidan  Zou Zhao Yi 《Vacuum》2006,80(9):981-985
AZO (ZnO:Al) transparent conductive thin film was prepared by RF magnetron sputtering with a AZO (98 wt% ZnO 2 wt% Al2O3) ceramic target in the same Ar+H2 ambient at different substrate temperatures ranging from 100 to 300 °C. The minimum resistivity of AZO films was 7.9×10−4 Ω cm at the substrate temperature of 200 °C. The average transmission in the visible rang was more than 90%. Scanning electron microscopy and XRD analyses showed that the surface morphology of the AZO samples altered with the increasing of the substrate temperature. AZO film prepared at 200 °C in the pure Ar ambient was also made as comparison about the resistivity, carrier concentration and the average crystallite size. The resistivity became about 3 times higher. The carrier concentration became lower and the average crystallite size was smaller.  相似文献   

16.
In this study, growth nano-layer metals (Al, Cu, Ag) and Al-doped ZnO (AZO) thin films are deposited on glass substrates as the transparent conducting oxides (TCOs) to form AZO/nano-layer metals/AZO sandwich structures. The conductivity properties of thin films are enhanced when the average transmittance over the wavelengths 400–800 nm is maintained at higher than 80 %. A radio frequency magnetron sputtering system is used to deposit the metal layers and AZO thin films of different thickness, to form AZO/Al/AZO (ALA), AZO/Cu/AZO (ACA) and AZO/Ag/AZO (AGA) structures. X-ray diffraction and field emission scanning electron microscopy are used to analyze the crystal orientation and structural characteristic. The optical transmission and resistivity are measured by UV–VIS–NIR spectroscopy and Hall effect measurement system, respectively. The results show that when the Ag thickness is maintained at approximately 9 nm, the TCOs thin film has the lowest resistivity of 8.9 × 10?5 Ω-cm and the highest average transmittance of 81 % over the wavelengths 400–800 nm. The crystalline Ag nano-crystal structures are observed by high-resolution transmission electron microscopy. In addition, the best figure of merit for the AZO/Ag/AZO tri-layer film is 2.7 × 10?2?1), which is much larger than that for other structures.  相似文献   

17.
Y.C. Lin  C.H. Chang  P.W. Wang 《Thin solid films》2010,518(21):6055-6060
Transparent conducting oxide thin films are used as front contact material for dye-sensitized solar cells. This study investigated the effects of chromium (Cr) and vanadium (V) contents on the chemical and heat stability properties of aluminum-doped zinc oxide (AZO) thin films using pulsed direct current magnetic sputtering on Corning 1737F glass substrates. The experimental results show that Cr and V doping is useful for improving the chemical and thermal stability of AZO films. The energy gap for AZO thin films is between 3.65 and 3.69 eV. The resistivity of the AZO:Cr:V thin film was 4.23 × 10-4 Ω cm at a Cr/V ratio of 0.30/0.23 wt.%, deposition power of 150 W, working distance of 5.5 cm, substrate temperature of 473 K, working pressure of 0.4 Pa, and frequency of 10 kHz. This value is lesser than (and therefore superior to) the resistivity of SnO2:F (FTO) films (6.5 × 10-4 Ω cm), but greater than that of SnO2:In (ITO) thin films (1.2 × 10-4 Ω cm). The resistivity increased by about 0.27% after electrolyte etching, which is similar to the 0.16% increase observed for the ITO thin film. After a thermal cycle test at 673 K, the resistivity of the AZO:Cr:V film increased to 5.42 × 10-4 Ω cm, which is better than the resistivity of the ITO and FTO films after the same thermal cycle.  相似文献   

18.
Ultra-thin ITO films with thickness of 4–56 nm were deposited on glass by dc magnetron sputtering using 5 wt% SnO2 doped ITO target. The effect of film thickness on the structural, electrical, optical properties and reliability was investigated for its application to touch panels. The 4 nm thick ITO film shows amorphous structure and other films present polycrystalline structure and the (222) preferred orientation. The ultra-thin ITO films show smooth surface with low Ra surface roughness smaller than 1 nm. The sheet resistance and visible transmittance of the ITO films decrease with the increase in film thickness. The 4 nm thick ITO film shows the highest resistivity (3.08 × 10?3 Ω cm) with low carrier density and Hall mobility, and other films have excellent conductivity (<4.0 × 10?4 Ω cm). The ITO films show high transmittance (>85 %) in visible light range and do not generate interference ripples between film and substrate interface. The ITO films with thickness of 18–56 nm show stable reliability under high temperature, high temperature & high humidity and alkaline environmental conditions. The only electrical degradation corresponds to the increase of sheet resistance in the ITO films with thickness of 4–12 nm.  相似文献   

19.
Transparent, conducting, aluminum-doped zinc oxide (AZO) thin films were deposited on Corning 1737 glass by a DC magnetron sputter. The structural, electrical, and optical properties of the films, deposited using various substrate temperatures, were investigated. The AZO thin films were fabricated with an AZO ceramic target (Al2O3:2 wt%). The obtained films were polycrystalline with a hexagonal wurtzite structure and preferentially oriented in the (002) crystallographic direction. The lowest resistivity was 6.0 × 10−4Ω cm, with a carrier concentration of 2.7 × 1020 cm−3 and a Hall mobility of 20.4 cm2/Vs. The average transmittance in the visible range was above 90%.  相似文献   

20.
Highly conducting AZO/Cu/AZO tri-layer films were successfully deposited on glass substrates by RF magnetron sputtering of Al-doped ZnO (AZO) and ion-beam sputtering of Cu at room temperature. The microstructures of the AZO/Cu/AZO multilayer films were studied using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and atomic force microscope (AFM). X-Ray diffraction measurements indicate that the AZO layers in the tri-layer films are polycrystalline with the ZnO hexagonal structure and have a preferred orientation with the c-axis perpendicular to the substrates. With the increase of Cu thickness, the crystallinity of AZO and Cu layers is simultaneously improved. When the Cu thickness increases from 3 to 13 nm, the resistivity decreases initially and then varies little, and the average transmittance shows a first increase and then decreases. The maximum figure of merit achieved is 1.94 × 10−2 Ω−1 for a Cu thickness of 8 nm with a resistivity of 7.92 × 10−5 Ω cm and an average transmittance of 84%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号