首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxidative coupling of methane to ethylene and ethane was studied over lithium–cerium-promoted MgO and MgO–CaO catalysts in the presence of molecular oxygen at 730°C and at atmospheric pressure in a continuous flow, fixed bed quartz reactor. The catalysts were prepared by an impregnation method and finally calcined at 900°C. The surface area, pore size distribution and pore volume of the catalysts were determined. The feed consisted of only methane and oxygen in the molar ratio of 2:1. The results obtained over the catalyst systems, viz. (i) lithium–cerium-promoted MgO and (ii) lithium–cerium-promoted MgO–CaO, have been compared. A relatively high C2-selectivity has been obtained with Li–Ce-promoted MgO–CaO catalysts. The optimum yield and selectivity for C2-hydrocarbons were found to be 21·5% and 76·8% respectively at a methane conversion of 28% over Li (7 wt%)–Ce (2 wt%)-doped MgO–CaO (3:1 wt ratio) catalyst. The various factors governing the activity and the selectivity of the catalyst systems have been discussed.  相似文献   

2.
The water-gas shift (WGS) reaction in the temperature range of 100–350 °C for various feed compositions simulating forward, reverse and real WGS conditions was studied for a series of coprecipitated mixed metal oxide catalysts of 30 wt% of CuO and 70 wt% of metal oxide (CeO2, ZnO, Cr2O3, and ZrO2) as well as for a commercial WGS catalyst (ICI 83-3). The catalysts were characterized using BET, XRD, H2-TPR and N2O dissociation studies. Among the tested catalysts, CuO-Cr2O3 showed the best activity in the forward WGS, while the commercial catalyst was the best catalyst in the real and reverse WGS reactions. The effect of Cu content in the catalyst was also studied and, in the case of the real WGS, 50 wt% CuO-Cr2O3 was more active than 30 wt% CuO-Cr2O3. H2 and CO2 were found to inhibit the forward WGS, decreasing the reaction rate substantially, particularly at temperatures below 200 °C. The inhibition effect varied depending on the tested catalyst and increased with increasing H2 or CO2 concentration. As the inhibition effect was reversible, the competitive adsorption of H2 or CO2 on the active sites has been suggested to be responsible for the effect. The high activity of the commercial catalyst in the H2 rich real WGS could be described by the difference in the H2 inhibition between the catalysts. An easily reducible copper species was found in CuO-Cr2O3 and could be attributed to the high activity in the forward WGS. Keywords:Mixed Metal Oxide Catalysts, Water Gas Shift Reaction, H2 Inhibition, CO2 Inhibition, Copper Chromate Catalyst  相似文献   

3.
The influence of different magnesium (Mg) weight percentages (1, 2.5, 5, 7.5 and 10) over silver (3 wt%) impregnated alumina (SA) catalyst was investigated for the reduction of NO by C3H6. Mg doped SA catalysts were prepared by conventional impregnation method and characterized by XRD, BET-SA, ICP-MS, XPS, SEM, UV-DRS, H2-TPR and O2-TPD. The existence of MgO and MgAl2O4 phases on Mg doped SA catalysts were observed from XRD and XPS analyses. Existence of high percentage MgAl2O4 phase on 5% Mg doped SA catalyst (Mg (5) SA) enhances the dispersion and stabilization of silver phases (Ag2O). Mg (5) SA catalyst shows a 51% of high selectivity (NO to N2) in presence of SO2 (80 ppm) at low temperatures (350 °C) and maintained high selectivity’s with a wide temperature window (350–500 °C). An optimal high surface availability of Ag0 and Ag+ species were observed from XPS analysis over Mg (5) SA catalyst. H2-TPR analysis shows high temperature reduction peak over Mg (5) SA compared to SA catalyst. XPS analysis confirms the high percent availability of MgAl2O4 species over Mg (5) SA catalyst. DRIFTS study reveals the molecular evidences for the evolution of enolic species during NO reduction over the highly active Mg (5) SA catalyst at low temperatures. It also confirms further transformation of enolic species into –NCO species with NO + O2 and finally into N2 and CO2.  相似文献   

4.
Influences of promoter concentration (or Sm/Mg ratio), precursor for MgO (viz. Mg-acetate, Mg-carbonate and Mg-hydroxide), calcination temperature of Sm-promoted MgO catalyst on the catalytic activity/selectivity in the oxidative coupling of methane (OCM) at different temperatures (650–850°C) and CH4/O2 ratios in feed (2·0–8·0) at a high space velocity (51600 cm3 g−1 h−1) have been investigated. The catalytic activity/selectivity of Sm–MgO catalysts in the OCM are found to be strongly influenced by the Sm/Mg ratio, precursor used for MgO and catalyst calcination temperature. The catalyst with Sm/Mg ratio of 0·11, prepared using magnesium acetate and magnesium carbonate as a source of MgO and calcining at 950°C, is found to be highly active and selective in the OCM process. A drastic reduction in catalytic activity/selectivity is observed when the catalyst is supported on low surface area porous catalyst carriers, indicating strong catalyst–support interactions. ©1997 SCI  相似文献   

5.
Preferential CO oxidation reaction has been carried out at a gas hourly space velocity of 46,129 h?1 over supported Pt catalysts prepared by an incipient wetness impregnation method. Al2O3, MgO-Al2O3 (MgO=30 wt% and 70 wt%) and MgO were employed as supports for the target reaction. 1 wt% Pt/Al2O3 catalyst exhibited very high performance (X CO >90% at 175 °C for 100 h) in the reformate gases containing CO2 under severe conditions. This result is mainly due to the highest Pt dispersion, easier reducibility of PtO x , and easier electron transfer of metallic Pt. In addition, 1 wt% Pt/Al2O3 catalyst was also tested in the reformate gases with both CO2 and H2O to evaluate under realistic condition.  相似文献   

6.
Melting relations in the systems CaO-manganese oxide and MgO-manganese oxide in air have been determined at temperatures up to 1705°C. In the system CaO-manganese oxide four crystalline phases have stable existence in equilibrium with liquids: lime (approximate composition CaO-MnO), spinel (approximate composition Mn3O4-CaMn2O4), and two ternary solid solution phases in which Ca/Mn ratios as well as oxygen contents vary over considerable ranges. One of these ternary solid solution phases may for the sake of simplicity be represented approximately by the formula CaMnO3 and the other by the formula CaMn2O4. Three isobaric invariant situations exist, with temperatures and phase assemblages as follows: At 1588°± 10°C the two crystalline phases lime and CaMnO3 coexist in equilibrium with liquid (40 wt% CaO, 60 wt% manganese oxide) in a peritectic situation. Another peritectic at 1455°± 5°C is characterized by the equilibrium coexistence of CaMnO3, CaMn2O4, and liquid (25 wt% CaO, 75 wt% manganese oxide). A eutectic situation exists at 1439°± 5°C with CaMn2O4, spinel, and liquid (18 wt% CaO, 82 wt% manganese oxide) present together in equilibrium. In the system MgO-manganese oxide in air periclase-manganosite solid solution (approximate composition MgO-MnO) and spinel (approximate composition Mn3O4-MgMn2O4) are the only crystalline phases present in equilibrium with liquids. Liquidus and solidus temperatures increase with increasing MgO content. A peritectic situation exists at 1587°± 10°C, with the two crystalline phases coexisting in equilibrium with liquid (1 wt% MgO, 99 wt% manganese oxide).  相似文献   

7.
Bulk polymerization of styrene (St) with an in‐situ‐activated Ziegler‐catalyst containing neodymium 2‐ethylhexyl phosphonate [Nd(P204)3], magnesium–aluminum alkyls and hexamethyl phosphoramide (HMPA) was studied. The new rare‐earth catalyst exhibited high activity for polymerization of styrene, and its catalytic efficiency reached 14 730 g PSt/g Nd. The influence of reaction parameters, such as Mg/Nd, Mg/Al, St/Nd molar ratios, temperature, etc, on the catalyst performance was examined in detail. The molecular weight of the resulting polystyrene is ultra‐high (MW = 40 × 104 ∼ 120 × 104 g mol−1) and the distribution of molecular weight is broad (MW/Mn = 2.1 ∼ 2.8). The microstructure of the polystyrene was characterized by IR and 13C NMR spectroscopies and found to be atactic. © 2001 Society of Chemical Industry  相似文献   

8.
Ni/K–MgO–ZrO2 catalysts for dry reforming of methane, with a range of Mg/Zr ratios and each containing about 10 wt% Ni, were prepared via Ni nitrate impregnation on MgO–ZrO2 supports synthesized by co-precipitation using K2CO3. It was found that a proportion of the potassium of the precipitant remained in the samples and improved the stability of the catalysts in the reaction. It was also shown that reduction of the catalysts at 1,023 K without calcination in air is necessary for stable and high activity; calcination in air at 1,073 K gives a deterioration of the catalytic properties, leading to rapid deactivation during the reaction. The order of the CH4 conversions of the reduced catalysts after 14 h on stream was as follows: Ni/K–Mg5Zr2 ~ Ni/K–Mg ≥ Ni/K–Mg2Zr5 ? Ni/K–Zr. A catalyst with 0.95 wt% K on MgO–ZrO2 with a Mg:Zr mole ratio of 5:2 showed the best resistance to deactivation. Experiments in a microbalance system showed that there was only negligible coke deposition on the surface of this sample. This behaviour was attributed to the presence of Ni nanoparticles with a diameter of less than 10 nm located on a MgO/NiO solid solution shell doped by K ions; this in turn covers a core of tetragonal ZrO2 and/or a MgO/ZrO2 solid solution. This conclusion was supported by EDS/TEM, XPS, XRD and H2 chemisorption measurements.  相似文献   

9.
A mixed MgF2–MgO system has been tested as a potential support of iridium catalysts in the hydrodesulfurization of thiophene. Samples of MgF2–MgO with different contents of MgO (0–100%) have been prepared by one-step sol–gel method in the reaction of magnesium methoxide dissolved in methanol with hydrofluoric acid. They have been used as supports for the synthesis of iridium (1 wt% Ir) catalysts. The supports have been characterized by XRD, low temperature nitrogen adsorption and thermogravimetric measurements. The one-step method of MgF2–MgO synthesis has been shown to permit the control of MgO content in the mixed system. The MgF2–MgO samples are classified as mesoporous, of large surface area (100–450 m2 g?1) depending on the amount of MgO introduced, with the maximum for 71 mol% MgO. The presence of two phases in the mixture delays the process of both MgF2 and MgO crystallization and increases the resistance of the MgF2–MgO texture to treatment at temperatures up to 800 °C. The catalysts obtained by deposition of the iridium phase on MgF2, MgO and MgF2–MgO (62 mol% MgO) calcined at 400–700 °C, have been tested in the reaction of hydrodesulfurization of thiophene. The most active has been the iridium catalyst supported on MgF2–MgO.  相似文献   

10.
《Ceramics International》2017,43(13):9891-9895
Micro-sized MgCO3 was used in castables as the MgO-precursor for generating sub-micro sized MgO and for producing subsequent in-situ magnesium aluminate (MgAl2O4, MA) spinel. The influence of 0–2.0 wt% micro-sized MgCO3 addition on the volumetric stability and thermo-mechanical properties of castables after firing at 1000 °C and 1550 °C was investigated. The in-situ spinel formation and its influence on the microstructure evolution in castable matrices with different micro-sized MgCO3 contents after heat-treatment were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The dependence of the volume stability and thermo-mechanical properties of castables on the micro-sized MgCO3 addition was discussed with respect to the in-situ spinel formation.  相似文献   

11.
The Mg–O–F system (MgF2–MgO) with different contents of MgF2 (100–0%) and MgO is tested as support of iridium catalysts in the hydrogenation of toluene as a function of the MgF2/MgO ratio. Mg–O–F samples have been prepared by the reaction of magnesium carbonate with hydrofluoric acid. The MgF2–MgO supports, after calcination at 500 °C, are classified as mesoporous of surface area (34–135 m2·g 1) depending on the amount of MgO introduced. The Ir/Mg–O–F catalysts have been tested in the hydrogenation of toluene. The highest activity, expressed as TOF, min 1, was obtained for the catalyst supported on Mg–O–F containing 75 mol%MgF2.  相似文献   

12.
Separation into narrow MWD fractions (liquid–liquid fractionation) and preparative TREF (temperature rising elution fractionation) with subsequent analysis of fractions by GPC, FTIR, and 13C NMR spectroscopy were used to study the comonomer distribution of ethylene/1–hexene copolymers produced over highly active supported titanium‐ and vanadium‐magnesium catalysts (TMC and VMC) and a supported zirconocene catalyst. These catalysts produce PE with different MWD: Mw/Mn values vary from 2.9 for zirconocene catalyst, 4.0 for TMC, and 15 for VMC. 1‐Hexene increases polydispersity to 25 for copolymer produced over VMC and hardly affects MWD of the copolymer produced over TMC and zirconocene catalysts. The most broad short chain branching distribution (SCBD) was found for ethylene/1–hexene copolymers produced over TMC. VMC and supported zirconocene catalyst produce copolymers with uniform profile of SCB content vs. molecular weight in spite of great differences in Mw/Mn values (22 and 2.5 respectively). TREF data showed that majority of copolymer produced over supported zirconocene catalyst was eluted at 70–90°C (about 85 wt %). In the case of VMC copolymer's fractions were eluted in the broad temperature interval (40–100°C). Accordingly, TREF data indicate a more homogeneous SCBD in copolymer, produced over supported zirconocene catalyst. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
The influence of the catalyst precursors (for Li2O and MgO) used in the preparation of Li‐doped MgO (Li/Mg = 0.1) on its surface properties (viz basicity, CO2 content and surface area) and activity/selectivity in the oxidative coupling of methane (OCM) process at 650–750 °C (CH4/O2 feed ratio = 3.0–8.0 and space velocity = 5140–20550 cm3 g−1 h−1) has been investigated. The surface and catalytic properties are found to be strongly affected by the precursor for Li2O (viz lithium nitrate, lithium ethanoate and lithium carbonate) and MgO (viz magnesium nitrate, magnesium hydroxide prepared by different methods, magnesium carbonate, magnesium oxide and magnesium ethanoate). Among the Li–MgO (Li/MgO = 0.1) catalysts, the Li–MgO catalyst prepared using lithium carbonate and magnesium hydroxide (prepared by the precipitation from magnesium sulfate by ammonia solution) and lithium ethanoate and magnesium acetate shows high surface area and basicity, respectively. The catalysts prepared using lithium ethanoate and magnesium ethanoate, and lithium nitrate and magnesium nitrate have very high and almost no CO2 contents, respectively. The catalysts prepared using lithium ethanoate or carbonate as precursor for Li2O, and magnesium carbonate or ethanoate, as precursor for MgO, showed a good and comparable performance in the OCM process. The performance of the other catalysts was inferior. No direct relationship between the basicity of Li‐doped MgO or surface area and its catalytic activity/selectivity in the OCM process was, however, observed. © 2000 Society of Chemical Industry  相似文献   

14.
The thermal and catalytic upgrsding of bio‐oil to liquid fuels was studied at atmospheric pressure in a dual reactor system over HZSM‐5, silica‐alumina and a mixed catalyst containing HZSM‐5 and silica‐alumina. This bio‐oil was produced by the rapid thermal processing of the maple wood. In this work, the intent was to improve the catalyst life. Therefore, the first reactor containing no catalyst facilitated thermal cracking of blo‐oil whereas the second reactor containing the desired catalyst upgraded the thermally cracked products. The effects of process variables such as reaction temperature (350°C to 410°C), space velocity (1.8 to 7.2 h?1) and catalyst type on the amounts and quality of organic liquid product (OLP) were investigated, In the case of HZSM‐5 catalyst, the yield of OLP was maximum at 27.2 wt% whereas the selectivity for aromatic hydrocarbons was maximum at 83 wt%. The selectivities towards aromatics and aliphatic hydrocarbons were highest for mixed and silica‐alumina catalysts, respectively. In all catalyst cases, maximum OLP was produced at an optimum reaction temperature of 370°C in both reactors, and at higher space velocity. The gaseous product consisted of CO and CO2, and C1‐C6 hydrocarbons, which amounted to about 20 to 30 wt% of bio‐oil. The catalysts were deactivated due to coking and were regenerated to achieve their original activity.  相似文献   

15.
To improve the overall sustainability of MgO‐based refractory production, a novel process to produce high purity MgO from calcined low‐grade magnesite in ammonium chloride solution was developed. The process was designed on the basis of the phase equilibria of the NH4Cl‐MgCl2‐NH3‐H2O system obtained using the Mixed Solvent Electrolyte model embedded in OLI software. The optimum calcination temperature of low‐grade magnesite was determined to be 650°C in terms of the conversion ratio of magnesium and calcium in the leaching experiments. An apparent activation energy of Mg extraction was 30.98 kJ/mol, which is slightly lower than that of Ca leaching. An empirical kinetic model of magnesium extraction was also developed to describe the effects of NH4Cl concentration, particle size of calcined magnesite, and solid‐to‐liquid ratio on the extent of extraction of magnesium. At leaching time of 10 min, the leachate with high Mg/Ca molar ratio was obtained. Then, MgO with a purity of 99.09% was produced through the decomposition of intermediate 4MgCO3·Mg(OH)2·4H2O. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1933–1946, 2015  相似文献   

16.
A series of polymethylene‐bridged dinuclear constrained geometry catalysts (CGC) [Me2Si(Ind)(NtBu) TiCl2]2[(CH2)n] ( 1 , n = 6; 2 , n = 9; 3 , n = 12) were synthesized to study the copolymerization of ethylene and styrene. The experiments display that the polymerization activity of the dinuclear catalysts increased in the order of 1 < 2 < 3 , which indicated that the dinuclear CGC with the longest methylene units as a bridge showed the greatest activity. According to the activity correlation with the monomer ratio, all the catalysts exhibited maximum polymerization activity at the monomer ratio of ([styrene]/[ethylene]) of 2. The dinuclear CGC 2 and 3 represented excellent characteristics of styrene reactivity while catalyst 1 represented considerably low styrene reactivity. The relation between the molecular weights of the polymers and the catalysts used in the polymerization is not straightforward. The steric interference in catalyst 1 , containing just six methylene bridges, can be applied to explain not only the strikingly decreased activity but also the very low styrene content in the copolymer. In contrast, the electronic effect seems to be more pronounced in manipulating the polymerization properties of catalysts 2 and 3 having nine and 12 methylene bridges, respectively. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2469–2474, 2003  相似文献   

17.
Mesoporous silica–alumina–polyoxometalate (HPW/SiO2–Al2O3) nanocomposite materials with silica–aluminum molar ratios of 10–80 have been successfully synthesized by evaporation induced self-assembly method with non-ionic surfactant P123 as template agent. The surface areas and pore sizes of the obtained HPW/SiO2–Al2O3 materials are in the range of 509–623 m2 g?1 and 3.6–3.8 nm, respectively, with different silica–aluminum molar ratios. The incorporated polyoxometalate clusters preserve their intact Keggin structure into the mesoporous frameworks. The Py–FTIR investigations indicate that the surface acidity of catalysts gradually increases with an increase in the percentage of aluminium, and the Lewis acidity sites are predominant. The nanocomposites were used as catalysts, and H2O2 as oxidant for oxidative desulfurization (ODS) of model fuel, which was composed of benzothiophene (BT), petroleum ether and benzene. The results show that the adsorption capacity and ODS performance of catalysts have close relationship with their surface acidity. An appropriate amount of Lewis acidity sites can contribute to the selective oxidation of the BT due to the preferential adsorption of BT on the catalyst surface, while the Brönsted acidity sites have a negative impact on the selective oxidation of the BT. As a result, the mesoporous HPW/SiO2–Al2O3 with silica–aluminum molar ratio of 50 shows the highest selectivity for BT oxidation in the presence of benzene and has achieved the goal of desulfurization. In addition, the catalyst shows excellent reusing ability, which makes it a promising catalyst in ODS process.  相似文献   

18.
Synthesis of Biodiesel from Canola Oil Using Heterogeneous Base Catalyst   总被引:1,自引:0,他引:1  
A series of alkali metal (Li, Na, K) promoted alkali earth oxides (CaO, BaO, MgO), as well as K2CO3 supported on alumina (Al2O3), were prepared and used as catalysts for transesterification of canola oil with methanol. Four catalysts such as K2CO3/Al2O3 and alkali metal (Li, Na, K) promoted BaO were effective for transesterification with >85 wt% of methyl esters. ICP-MS analysis revealed that leaching of barium in ester phase was too high (~1,000 ppm) when BaO based catalysts were used. As barium is highly toxic, these catalysts were not used further for transesterification of canola oil. Optimization of reaction conditions such as molar ratio of alcohol to oil (6:1–12:1), reaction temperature (40–60 °C) and catalyst loading (1–3 wt%) was performed for most efficient and environmentally friendly K2CO3/Al2O3 catalyst to maximize ester yield using response surface methodology (RSM). The RSM suggested that a molar ratio of alcohol to oil 11.48:1, a reaction temperature of 60 °C, and catalyst loading 3.16 wt% were optimum for the production of ester from canola oil. The predicted value of ester yield was 96.3 wt% in 2 h, which was in agreement with the experimental results within 1.28%.  相似文献   

19.
A large amount of single wall carbon nanotubes (SWNTs) was successfully produced by thermal decomposition of C2H, at 800 °C over magnesia supported Fe-Mo bimetallic catalysts in a tubular flow reactor under an atmosphere of hydrogen flow. The growth density of SWNTs increased with increasing the weight percent of the catalyst metals (wt% ratio of two metals: 50 : 50) supported on magnesia (MgO) from 5 to 30 wt%. The yield of SWNTs reached 144.3% over 30 wt% metal-loaded catalyst. Raman measurements showed the growth of bundle type SWNTs with diameters ranging from 0.81 to 1.96 nm. The growth of SWNTs was also identified by thermal gravimetric analysis (TGA) and Raman spectroscopy.  相似文献   

20.
The goal of this work is to study the effect of thermal pre-treatment of Mg/Al mixed oxides (450–1,050 °C) on their structure, basicity and catalytic activity in transesterification of rapeseed oil. The catalytic activity of Mg/Al catalysts was shown to depend not only on the amount of basic sites, but also on crystallite size of MgO, specific surface area and population of medium/strong basic sites. Moreover, high stability of Mg/Al-550 was established by re-using the catalyst four times. It was associated with negligible magnesium leaching from the solid catalyst to liquid phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号