首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Iron nanoparticles encapsulated by carbon are protected from reactions with their environment avoiding oxidation in ambient conditions and thus, preserving their magnetic properties. Such particles are good candidates for magnetic fluid hyperthermia. When graphite shells are present, acidic treatments allow the formation of carboxylic groups on the nanoparticle surface. Those carboxylic groups can be used for further complexation with the drug cisplatin. We show the possibility of loading cisplatin on such nanoparticles and that the loading is dependent on the degree of surface functionalization. The drug release is dependent on time and temperature, making it ideal for applications involving hyperthermia. We show the possibility of applying hyperthermia in vitro using these nanoparticles. When loaded with cisplatin a stronger cytotoxic effect is observed. Such particles could be potentially used as multimodal anti-cancer agents for therapies based on the synergistic effect of chemotherapy and hyperthermia.  相似文献   

2.
Dendrimers are a class of nano‐sized synthetic polymers with a well‐defined composition and regularly branched tree‐like structure produced by stepwise growth. The uniform size, globular shape and tunable surface chemistry make dendrimers versatile nanoscaffolds to encapsulate or stabilize various inorganic (metal, metal oxide, semiconductor) nanoparticles. In the past decade, research interest in dendrimer–inorganic nanoparticle hybrids has evolved from the development of interesting properties to the exploitation of advanced and useful functions. In particular, because gold nanoparticles with controlled morphology and optical properties have been demonstrated to be promising and versatile candidates for a diverse field of biomedical applications including sensing, in vitro and in vivo imaging, drug delivery, diagnostics and therapies, dendrimer–gold nanoparticle hybrids with biocompatibility have recently been intensively investigated for promising biomedical applications due to their controllable structures and dimensions, as well as their desirable internal and/or external functionalities. In this review, we discuss the recent progress regarding the development of functional dendrimer–gold nanoparticle hybrids for biomedical applications. The strategies for the fabrication of various structures of dendrimer–gold nanoparticle hybrids will first be summarized, followed by their biomedical applications in drug and gene delivery, photothermal therapy and combined therapies. © 2018 Society of Chemical Industry  相似文献   

3.
Magnetic nanospheres have numerous applications in biomedicine, biotechnology and wastewater treatment, due to their high surface area, tunable sphere size and superparamagnetic properties. Magnetic nanoparticles can be designed and endowed with optical, electronic and fluorescent properties, allowing a wide range of functionality. Multifunctional magnetic particles with heterodimer structures allow various kinds of target molecules to be attached onto their specific parts via affinity or coordinate bonding, etc. The abilities of these nanodevices, including the encapsulation of target molecules in magnetic hybrid nanostructures and easy magnetic separation in the presence of external magnetic fields, show much promise for magnetic imaging, magnetic separation and drug delivery. Consequently, magnetic particles offer excellent potential future uses in disease diagnosis, hyperthermia, immunoassays, electrochemical biosensors, contaminated water treatment and optical detection. In this article, we review the preparation and application of inorganic and organic magnetic composite spheres in the fields of magnetic separation, drug delivery, hyperthermia, magnetic resonance imaging, and others. The size, specific surface area, structure, magnetic properties and surface functional groups of nanospheres have a great influence on their effectiveness in these applications. The encapsulation of target molecules in magnetic hybrid nanostructures and their easy separation using an external magnetic field show promise for the fabrication of novel nanodevices for many applications. Copyright © 2011 Society of Chemical Industry  相似文献   

4.
Superparamagnetic iron oxide nanoparticles (SPIONs) are frequently used for drug targeting, hyperthermia and other biomedical purposes. Recently, we have reported the synthesis of lauric acid-/albumin-coated iron oxide nanoparticles SEONLA-BSA, which were synthesized using excess albumin. For optimization of magnetic treatment applications, SPION suspensions need to be purified of excess surfactant and concentrated. Conventional methods for the purification and concentration of such ferrofluids often involve high shear stress and low purification rates for macromolecules, like albumin. In this work, removal of albumin by low shear stress tangential ultrafiltration and its influence on SEONLA-BSA particles was studied. Hydrodynamic size, surface properties and, consequently, colloidal stability of the nanoparticles remained unchanged by filtration or concentration up to four-fold (v/v). Thereby, the saturation magnetization of the suspension can be increased from 446.5 A/m up to 1667.9 A/m. In vitro analysis revealed that cellular uptake of SEONLA-BSA changed only marginally. The specific absorption rate (SAR) was not greatly affected by concentration. In contrast, the maximum temperature Tmax in magnetic hyperthermia is greatly enhanced from 44.4 °C up to 64.9 °C by the concentration of the particles up to 16.9 mg/mL total iron. Taken together, tangential ultrafiltration is feasible for purifying and concentrating complex hybrid coated SPION suspensions without negatively influencing specific particle characteristics. This enhances their potential for magnetic treatment.  相似文献   

5.
The present paper describes ordered alloy FePt nanoparticles with high magnetic susceptibility to alternate current (ac) fields at around room temperature for biomedical applications such as magnetic sensing devices for diagnostics and magnetic hyperthermia for cancer therapy. Since ac magnetic susceptibility takes the maximum value at a temperature near the blocking temperature of magnetic nanoparticles, the blocking temperature of the FePt nanoparticles is required to be adjusted at around room temperature to improve biomedical performances. Ordered alloy FePt has much higher magnetic anisotropy than iron oxides, and it can be the best candidate in the case of their particle size less than 10 nm. The ordered alloy FePt nanoparticles are synthesized by reduction of Fe and Pt organo-metallic compounds with tetraethylene glycol using poly(N-vinyl-2-pyrrolidone) (PVP) as a protective agent. PVP is a water-soluble polymer, and is proper to obtain dispersion into water. Influences of reaction temperature on crystallite size (particle size) and blocking temperature and the relationship between the blocking temperature and the value of ac magnetic susceptibility at around room temperature are investigated. Furthermore, PVP concentration at the synthesis to obtain well dispersed nanoparticle-suspension is examined.  相似文献   

6.
In human, strontium (Sr) follows the same physiological pathway as calcium and thus could be used for improving the bioactivity and osteoconductivity of hydroxyapatite (HAp) in bone tissues. Similarly, iron (Fe) can potentially play an important role in bone remodeling due to its magnetic properties. Therefore, the current study was aimed to simultaneously co-substitute Sr2+/Fe3+ in HAp nanoparticles for various potential biomedical applications. The Sr2+/Fe3+ co-substituted HAp nanoparticles were systematically synthesized through sonication-assisted aqueous precipitation method. The as-synthesized nanoparticles were evaluated for different physicochemical and biological properties. X-ray diffraction (XRD) patterns of Sr2+/Fe3+ co-substituted HAp nanoparticles confirmed their phase purity and showed hexagonal-like structure. Scanning electron microscope (SEM) micrographs showed an agglomerated rod-like morphology of HAp nanoparticles which contained pores consisted of small spheroids. The nanoparticles displayed magnetization (Ms) reliance on the loading level of mole % (X?=?Fe3+) and exhibited tunable porosity and microhardness (Hv) upon heat treatment. The nanoparticles showed less than 5% hemolysis demonstrating high blood compatibility with high in vitro bioactivity performance. The multifunctional properties of synthesized nanoparticles make them a potential candidate for various biomedical applications; including bone grafting and guided bone regeneration, targeted drug delivery, magnetic resonance imaging, and hyperthermia based cancer treatment.  相似文献   

7.
《Ceramics International》2020,46(4):4058-4064
In this study, drug loading and release ability of the ferrite nanoparticle coated with PEG (polyethylene glycol) have been investigated for biomedical applications. The zinc-magnesium ferrite (ZnxMg(1-x)Fe2O4) was synthesized using sol-gel route. The doping concentration of Zn was gradually increased from zero to maximum (x = 1). XRD (X-ray diffraction) analysis of the samples shows the single phase with a cubic spinel structure. The Debye-Scherer formula has been used to calculate the average crystallite size (30.51 nm). The dumbbell and spherical shaped morphology (40–50 nm average particle size) have been investigated from the secondary electron images of FESEM (Field Emission Scanning Electron Microscopy). The antimicrobial assay has been carried out against E. coli bacteria by gentamicin (drug) loaded ferrite nanoparticles. The significant zone of inhibition might suggest that the drug-loaded ferrite nanoparticles can be used in drug delivery applications. PL (Photoluminescence) of the spinel ferrite shows that all the samples are in the visible range, and peaks at around 430 nm. The result reveals the synthesis of high purity ferrite nanoparticles with significant potential for drug delivery applications.  相似文献   

8.
Mixed zinc oxide nanoparticle coated magnetic iron oxide has been prepared by a sol–gel and co-precipitation routes. Magnetic iron oxide nanoparticles were synthesized by co-precipitation of ferric and ferrous ions with ammonia, and then zinc oxide was coated onto the surface of magnetic iron oxide by hydrolysis of zinc precursors. As a result, zinc oxide coated magnetic iron oxide nanoparticles with an average size of 68 nm were obtained. The crystalline bacterial cell surface layer)S-layer (used in this study was isolated from Lactobacillus helveticus ATCC 12046. The S-layer was adsorbed onto the surface of zinc oxide nanoparticle coated magnetic iron oxide. The nanoparticles were analyzed by X-ray powder diffractometry (XRD), infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FESEM) were used to characterize the structural and the chemical features of the nanocomposites. The infrared spectra indicate that the S-layer-nanoparticle interaction occurs. This novel nanoparticle showed admirable potential in adsorption of S-layers on the surface of oxides for drug delivery.  相似文献   

9.
《Ceramics International》2023,49(3):4551-4570
Assessing the biocompatibility of magnetic nanoparticles for biomedical applications is highly demanded and attracted an increasing interest in the last years. We, herein report the synthesis, physical characterization, and biocompatibility of CoFe(2-x-y-z)GdxSmyHozO4 (x = y = z = 0, 0.01) nanoparticles (NPs) synthesized by the auto-combustion method for the first time. The physicochemical and magnetic properties of the synthesized nanoparticles were fully characterized using various techniques including X-ray diffraction (XRD), Fourier transforms infrared spectra (FTIR), scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM). A single-phase with a space group Fd-3m and mixed spinel structure were confirmed by XRD, Rietveld analysis, and the cation distribution study. FTIR confirms the formation of the crystallographic sites of the spinel structure, namely the octahedral site and the tetrahedral site. The nanoparticles exhibited a quasi-spherical shape with size distribution (24–51 nm). VSM measurements reveal that magnetic properties can be tuned by doping for biomedical applications. To evaluate the safety of our nanoparticle sub-chronic toxicity was highlighted in Wistar rats by oral administration at doses of 500, 250,125, and 50 mg/kg and by intraperitoneal injection at doses of 40,20,10, and 5 mg/kg. Results showed no significant changes in the hematological parameters, serum biochemical system, organ weight, and histopathological examination (p > 0,05) for doses below 250 mg/kg and 40 mg/kg administered orally or by intraperitoneal injection respectively. The results of the current study suggesting that treatment with the nanoparticle for 28 days does not produce any significant toxicity in the male and female rats for the either using voices (oral, intraperitoneal) except at high doses. These findings reported here strongly suggest that the as-prepared nanoparticles can be used in several biomedical applications, including separation and purification, drug delivery, imaging (MRI contrast), and therapy (hyperthermia).  相似文献   

10.
Recent advances in the development and biological applications of polymeric nanomaterials embedded with superparamagnetic iron oxide nanoparticles (SIONPs) are summarized. Novel SIONP-polymer hybrid nanoparticles are prepared by various methods, including direct modification with polymers, surface-initiated controlled polymerization, inorganic silica/polymer hybridization, self-assembly, self-association, and various heterogeneous polymerization methods. They have potential for various biomedical applications, including magnetic resonance imaging (MRI) contrast enhancement, targeted drug delivery, hyperthermia, biological separation, protein immobilization, and biosensors.  相似文献   

11.
Feraheme, is a recently FDA-cleared superparamagnetic iron oxide nanoparticle (SPION)-based MRI contrast agent that is also employed in the treatment of iron deficiency anemia. Feraheme nanoparticles have a hydrodynamic diameter of 30 nm and consist of iron oxide crystallites complexed with a low molecular weight, semi-synthetic carbohydrate. These features are attractive for other potential biomedical applications such as magnetic fluid hyperthermia (MFH), since the carboxylated polymer coating affords functionalization of the particle surface and the size allows for accumulation in highly vascularized tumors via the enhanced permeability and retention effect. This work presents morphological and magnetic characterization of Feraheme by transmission electron microscopy (TEM), Energy dispersive X-ray spectroscopy (EDX), and superconducting quantum interference device (SQUID) magnetometry. Additionally, the results of an initial evaluation of the suitability of Feraheme for MFH applications are described, and the data indicate the particles possess promising properties for this application.  相似文献   

12.
13.
Poly(2-hydroxyethyl methacrylate) (pHEMA) as a biomaterial with excellent biocompatibility and cytocompatibility elicits a minimal immunological response from host tissue making it desirable for different biomedical applications. This article seeks to provide an in-depth overview of the properties and biomedical applications of pHEMA for bone tissue regeneration, wound healing, cancer therapy (stimuli and non-stimuli responsive systems), and ophthalmic applications (contact lenses and ocular drug delivery). As this polymer has been widely applied in ophthalmic applications, a specific consideration has been devoted to this field. Pure pHEMA does not possess antimicrobial properties and the site where the biomedical device is employed may be susceptible to microbial infections. Therefore, antimicrobial strategies such as the use of silver nanoparticles, antibiotics, and antimicrobial agents can be utilized to protect against infections. Therefore, the antimicrobial strategies besides the drug delivery applications of pHEMA were covered. With continuous research and advancement in science and technology, the outlook of pHEMA is promising as it will most certainly be utilized in more biomedical applications in the near future. The aim of this review was to bring together state-of-the-art research on pHEMA and their applications.  相似文献   

14.
Amstad E  Textor M  Reimhult E 《Nanoscale》2011,3(7):2819-2843
Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of research and practical applications in the biomedical field, including magnetic cell labeling separation and tracking, for therapeutic purposes in hyperthermia and drug delivery, and for diagnostic purposes, e.g., as contrast agents for magnetic resonance imaging. These applications require good NP stability at physiological conditions, close control over NP size and controlled surface presentation of functionalities. This review is focused on different aspects of the stability of superparamagnetic iron oxide NPs, from its practical definition to its implementation by molecular design of the dispersant shell around the iron oxide core and further on to its influence on the magnetic properties of the superparamagnetic iron oxide NPs. Special attention is given to the selection of molecular anchors for the dispersant shell, because of their importance to ensure colloidal and functional stability of sterically stabilized superparamagnetic iron oxide NPs. We further detail how dispersants have been optimized to gain close control over iron oxide NP stability, size and functionalities by independently considering the influences of anchors and the attached sterically repulsive polymer brushes. A critical evaluation of different strategies to stabilize and functionalize core-shell superparamagnetic iron oxide NPs as well as a brief introduction to characterization methods to compare those strategies is given.  相似文献   

15.
《Ceramics International》2020,46(8):12156-12164
Multifunctional nanomaterials with superior super-paramagnetic and bioactivity properties with regulated particle morphology can be advantageous for several therapeutic applications. In this investigation, nanorods-like mesoporous particles of Ca10-xFex(PO4)6(OH)2 with varying concentrations of Fe ions were hydrothermally synthesized. In addition to the evaluation of structural and physicochemical properties, magnetic and in-vitro bioactivity attributes were further investigated. Results suggested that with increasing concentration of Fe ions; lattice parameters, crystal size and crystallinity decreased, whereas, surface area, porosity and magnetization of nanorods-like mesoporous particles increased. Nanocomposites exhibited superior super-paramagnetic property. Particles were bioactive and non-resorbable in simulated conditions. Thus, the amalgamation of super-paramagnetism with superior textural and bioactive properties of nanoparticles suggested their high potential for multifunctional applications, including anti-cancer hyperthermia treatment, drug delivery and tissue regeneration.  相似文献   

16.
Magnetic nanoparticles that are superparamagnetic with high saturation moment have great potential for biomedical applications. Solution‐phase syntheses have recently been applied to make various kinds of monodisperse magnetic nanoparticles with standard deviation in diameter of less than 10%. However, the surface of these nanoparticles is coated with a layer of hydrocarbon molecules due to the use of lipid‐like carboxylic acid and amine in the syntheses. Surface functionalization leads to the formation of water‐soluble nanoparticles that can be further modified with various biomolecules. Such functionalization has brought about several series of monodisperse magnetic nanoparticle systems that have shown promising applications in protein or DNA separation, detection and magnetic resonance imaging contrast enhancement. The goal of this mini review is to summarize the recent progress in the synthesis and surface modification of monodisperse magnetic nanoparticles and their applications in biomedicine. Copyright © 2007 Society of Chemical Industry  相似文献   

17.
The tremendous interest in magnetic nanoparticles (MNPs) is reflected in published research that ranges from novel methods of synthesis of unique nanoparticle shapes and composite structures to a large number of MNP characterization techniques, and finally to their use in many biomedical and nanotechnology-based applications. The knowledge gained from this vast body of research can be made more useful if we organize the associated results to correlate key magnetic properties with the parameters that influence them. Tuning these properties of MNPs will allow us to tailor nanoparticles for specific applications, thus increasing their effectiveness. The complex magnetic behavior exhibited by MNPs is governed by many factors; these factors can either improve or adversely affect the desired magnetic properties. In this report, we have outlined a matrix of parameters that can be varied to tune the magnetic properties of nanoparticles. For practical utility, this review focuses on the effect of size, shape, composition, and shell-core structure on saturation magnetization, coercivity, blocking temperature, and relaxation time.  相似文献   

18.
Chitosan is among the most abundant biopolymers on earth and has been either used or exhibited potential in a wide variety of industrial and biomedical applications. With the advancement of materials technologies, chitosan has been chemically modified to self-assemble into nanoarchitectures that are usable in advanced biomedical applications, such as drug nanocarriers, macroscopic injectables, tissue-engineering scaffolds, and nanoimaging agents. Colloidal amphiphilically modified chitosan (AMC) is a relatively recent material receiving increased attention with numerous publications addressing the medical advantages of specific systems. To date, many reviews have focused on the synthesis and biomedical properties of chitosan-based biomaterials, but a comprehensive study focusing on the colloidal properties of AMC in relation to biomedical performance appears to be lacking. This review provides a survey of the field, critically reviewing the colloidal properties and biomedical performance of AMC systems, such as nanoparticle drug delivery systems and macroscopic medical devices. Finally, the future development, market potential, and clinical implications of these promising colloidal-structured biomaterials are summarised.  相似文献   

19.
In this work, a theoretical model describing the interaction between a positively or negatively charged nanoparticle and neutral zwitterionic lipid bilayers is presented. It is shown that in the close vicinity of the positively charged nanoparticle, the zwitterionic lipid headgroups are less extended in the direction perpendicular to the membrane surface, while in the vicinity of the negatively charged nanoparticle, the headgroups are more extended. This result coincides with the calculated increase in the osmotic pressure between the zwitterionic lipid surface and positively charged nanoparticle and the decrease of osmotic pressure between the zwitterionic lipid surface and the negatively charged nanoparticle. Our theoretical predictions agree well with the experimentally determined fluidity of a lipid bilayer membrane in contact with positively or negatively charged nanoparticles. The prospective significance of the present work is mainly to contribute to better understanding of the interactions of charged nanoparticles with a zwitterionic lipid bilayer, which may be important in the efficient design of the lipid/nanoparticle nanostructures (like liposomes with encapsulated nanoparticles), which have diverse biomedical applications, including targeted therapy (drug delivery) and imaging of cancer cells.  相似文献   

20.
《Ceramics International》2019,45(12):15143-15155
Designing biocompatible superparamagnetic mesoporous nanoparticles for advanced healthcare applications has received much attention. In this research, we have synthesized intrinsic mesoporous superparamagnetic hydroxyapatite (HAp) nanoparticles using bio-waste of black Chlamys varia seashell as a calcium source by sodium dodecyl sulfate (SDS)–enabled microwave-assisted synthesis approach. The synthesized Fe-doped HAp nanoparticles were characterized using various characterization techniques to know the phase purity and morphological features. The incorporation of Fe greatly affected the morphology of HAp nanoparticles without affecting their crystalline phase. Superparamagnetic behavior was observed with the incorporation of Fe in the HAp nanoparticles. Further, saturation magnetization was enhanced with higher incorporation of Fe ions. The cytotoxicity studies of the synthesized pure and Fe-doped HAp samples conducted using a human osteoblasts cell line (MG63), which indicated that Fe-doped HAp nanoparticles are biocompatible. Further, antibacterial activity analysis also confirmed their excellent antibacterial performance against different pathogens. Hence, SDS-enabled microwave-assisted synthesis approach using seashell as a calcium source would be a better approach for the production of intrinsic mesoporous superparamagnetic HAp nanoparticles for various biomedical applications, such as drug targeting, hyperthermia cancer therapy, and magnetic resonance imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号