首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Fabry disease (FD) is an X-linked lysosomal storage disorder caused by mutations of the GLA gene that result in a deficiency of the enzymatic activity of α-galactosidase A and consequent accumulation of glycosphingolipids in body fluids and lysosomes of the cells throughout the body. GB3 accumulation occurs in virtually all cardiac cells (cardiomyocytes, conduction system cells, fibroblasts, and endothelial and smooth muscle vascular cells), ultimately leading to ventricular hypertrophy and fibrosis, heart failure, valve disease, angina, dysrhythmias, cardiac conduction abnormalities, and sudden death. Despite available therapies and supportive treatment, cardiac involvement carries a major prognostic impact, representing the main cause of death in FD. In the last years, knowledge has substantially evolved on the pathophysiological mechanisms leading to cardiac damage, the natural history of cardiac manifestations, the late-onset phenotypes with predominant cardiac involvement, the early markers of cardiac damage, the role of multimodality cardiac imaging on the diagnosis, management and follow-up of Fabry patients, and the cardiac efficacy of available therapies. Herein, we provide a comprehensive and integrated review on the cardiac involvement of FD, at the pathophysiological, anatomopathological, laboratory, imaging, and clinical levels, as well as on the diagnosis and management of cardiac manifestations, their supportive treatment, and the cardiac efficacy of specific therapies, such as enzyme replacement therapy and migalastat.  相似文献   

2.
Vibrational spectroscopy can detect characteristic biomolecular signatures and thus has the potential to support diagnostics. Fabry disease (FD) is a lipid disorder disease that leads to accumulations of globotriaosylceramide in different organs, including the heart, which is particularly critical for the patient’s prognosis. Effective treatment options are available if initiated at early disease stages, but many patients are late- or under-diagnosed. Since Coherent anti-Stokes Raman (CARS) imaging has a high sensitivity for lipid/protein shifts, we applied CARS as a diagnostic tool to assess cardiac FD manifestation in an FD mouse model. CARS measurements combined with multivariate data analysis, including image preprocessing followed by image clustering and data-driven modeling, allowed for differentiation between FD and control groups. Indeed, CARS identified shifts of lipid/protein content between the two groups in cardiac tissue visually and by subsequent automated bioinformatic discrimination with a mean sensitivity of 90–96%. Of note, this genotype differentiation was successful at a very early time point during disease development when only kidneys are visibly affected by globotriaosylceramide depositions. Altogether, the sensitivity of CARS combined with multivariate analysis allows reliable diagnostic support of early FD organ manifestation and may thus improve diagnosis, prognosis, and possibly therapeutic monitoring of FD.  相似文献   

3.
Mid-infrared drying (MIRD) was applied before or after freeze-drying (FD) of shiitake mushroom to shorten the drying time, to enhance the rehydration, and to better preserve the aroma compounds and color. The effect of application of MIRD before freeze drying (MIRD–FD) and after freeze drying (FD–MIRD) on drying time, color, rehydration ratio, apparent density, microstructure and aroma compounds was measured, explained and compared with the effect of FD on these parameters. The results showed that the combination of FD (for 4 h) followed by MIRD saves 48% time compared to FD while keeping the product quality at an acceptable level. The MIRD–FD combination was found to be inferior compared to the FD–MIRD as the former tended to produce products with a collapsed surface layer and poor rehydration capability. The combination of MIRD with FD had a significant effect on aroma retention and caused an increase of sulfur compounds such as dimethyl, trisulfide and 1,2,4-trithiolane.  相似文献   

4.
5.
Adrenoleukodystrophy (X-ALD) is an X-linked genetic disorder caused by mutation of the ATP-binding cassette subfamily D member 1 gene, which encodes the peroxisomal membrane protein, adrenoleukodystrophy protein (ALDP). ALDP is associated with the transport of very-long-chain fatty acids (VLCFAs; carbon chain length ≥ 24) into peroxisomes. Defective ALDP leads to the accumulation of saturated VLCFAs in plasma and tissues, which results in damage to myelin and the adrenal glands. Here, we profiled the glycosphingolipid (GSL) species in fibroblasts from X-ALD patients. Quantitative analysis was performed using liquid chromatography–electrospray ionization–tandem mass spectrometry with a chiral column in multiple reaction monitoring (MRM) mode. MRM transitions were designed to scan for precursor ions of long-chain bases to detect GSLs, neutral loss of hexose to detect hexosylceramide (HexCer), and precursor ions of phosphorylcholine to detect sphingomyelin (SM). Our results reveal that levels of C25 and C26-containing HexCer, Hex2Cer, NeuAc-Hex2Cer, NeuAc-HexNAc-Hex2Cer, Hex3Cer, HexNAc-Hex3Cer, and SM were elevated in fibroblasts from X-ALD patients. In conclusion, we precisely quantified SM and various GSLs in fibroblasts from X-ALD patients and determined structural information of the elevated VLCFA-containing GSLs.  相似文献   

6.
A fractal method was introduced to quantitatively characterize the dispersibility of modified kaolinite (MK) and precipitated silica (PS) in styrene–butadiene rubber (SBR) matrix based on the lower magnification transmission electron microscopic images. The fractal dimension (FD) is greater, and the dispersion is worse. The fractal results showed that the dispersibility of MK in the latex blending sample is better than that in the mill blending samples. With the increase of kaolinite content, the FD increases from 1.713 to 1.800, and the dispersibility of kaolinite gradually decreases. There is a negative correlation between the dispersibility and loading content. With the decrease of MK and increase of PS, the FD significantly decreases from 1.735 to 1.496 and the dipersibility of kaolinite remarkably increases. The hybridization can improve the dispersibility of fillers in polymer matrix. The FD can be used to quantitatively characterize the aggregation and dispersion of kaolinite sheets in rubber matrix. POLYM. COMPOS., 36:1486–1493, 2015. © 2014 Society of Plastics Engineers  相似文献   

7.
Sandhoff disease (SD) is a glycosphingolipid (GSL) storage disease that arises from an autosomal recessive mutation in the gene for the β-subunit of β-Hexosaminidase A (Hexb gene), which catabolizes ganglioside GM2 within lysosomes. Accumulation of GM2 and asialo-GM2 (GA2) occurs primarily in the CNS, leading to neurodegeneration and brain dysfunction. We analyzed the total lipids in the brains of SD mice, cats, and humans. GM2 and GA2 were mostly undetectable in the normal mouse, cat, and human brain. The lipid abnormalities in the SD cat brain were generally intermediate to those observed in the SD mouse and the SD human brains. GM2 comprised 38, 67, and 87% of the total brain ganglioside distribution in the SD mice, cats, and humans, respectively. The ratio of GA2–GM2 was 0.93, 0.13, and 0.27 in the SD mice, cats, and humans, respectively, suggesting that the relative storage of GA2 is greater in the SD mouse than in the SD cat or human. Finally, the myelin-enriched lipids, cerebrosides and sulfatides, were significantly lower in the SD brains than in the control brains. This study is the first comparative analysis of brain lipids in mice, cats, and humans with SD and will be important for designing therapies for Sandhoff disease patients.  相似文献   

8.
The purpose of this research was to develop blends of poly(vinyl alcohol) (PVA)‐poly(ethylene oxide) (PEO) and carboxymethyl cellulose (CMC) by two approaches: solvent casting and freeze‐drying to develop membranes for various biomedical applications. The PVA/PEO/CMC blends in different compositions of 90/10/20, 80/20/20, 70/30/20, 60/40/20, and 50/50/20 were prepared and were coated on polyester (PET) nonwoven fabric and were subsequently freeze‐dried (FD). The influence of PEO concentration on the blend membranes was investigated and characterized by X‐ray diffraction (XRD), differential scanning calorimetry, and attenuated total reflectance‐fourier transform infra‐red (ATR–FTIR) techniques. The water vapor transmission rate (WVTR), swelling behavior, and surface morphology of the FD membranes was also investigated. It was observed that an increase of PEO concentration in blends makes the membranes more fragile. However, the coating of this blend on PET fabric helps in developing the stable membrane. Swelling of the membranes decreased with the increase in the PEO concentration. XRD showed decrease in crystallinity with increase in concentration of PEO. Morphological studies showed a highly porous structure with interconnected pores. The total porosity of the membranes was found to be in the range 89–92%. The FD membranes were found to have WVTR in the range 2000–3000 g/m2/day. A model drug, ciprofloxacin hydrochloride was also incorporated in the matrix and drug release was studied. The antimicrobial nature of the membranes was monitored against E. coli by zone of inhibition method. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
After making model of gastric functional disorder (FD), part of model mice were injected intravenously (i.v.) with oxide multi-walled carbon nanotubes (oMWCNTs) to investigate effect of carbon nanotubes on gastric emptying. The results showed that NO content in stomach, compared with model group, was decreased significantly and close to normal level post-injection with oMWCNTs (500 and 800 μg/mouse). In contrast to FD or normal groups, the content of acetylcholine (Ach) in stomach was increased obviously in injection group with 500 or 800 μg/mouse of oMWCNTs. The kinetic curve of emptying was fitted to calculate gastric motility factor k; the results showed that the k of injection group was much higher than FD and normal. In other words, the gastric motility of FD mice was enhanced via injection with oMWCNTs. In certain dosage, oMWCNTs could improve gastric emptying and motility.  相似文献   

10.
The functionalization of polypropylene (PP) with a maleinized hyperbranched polyester polyol (MHBP) was performed in solution to obtain PP-g-MHBPs. The degree of functionalization (FD) increased with MHBP and dicumyl peroxide (DCP) contents, but the contact angle followed an opposite behavior. The sample obtained with the proportion of 9.0 wt % MHBP and 2.0 wt % DCP and presented the highest FD value. An FD value of 2.4 wt %, produced a reduction of 19° on the contact angle. It was observed by differential scanning calorimetry (DSC) that the PP-g-MHBPs obtained by employing 3.0 wt % of MHBP, exhibited a slight reduction of the melting temperature (Tm) with the increase in the amounts of FD and DCP. Some FD values obtained in this study are higher than those obtained both commercial and noncommercial grades of PP functionalized with maleic anhydride. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46932.  相似文献   

11.
Although sphingolipids are highly important signaling molecules enriched in lipid rafts/caveolae, relatively little is known regarding factors such as sphingolipid binding proteins that may regulate the distribution of sphingolipids to lipid rafts/caveolae of living cells. Since early work demonstrated that sterol carrier protein-2 (SCP-2) enhanced glycosphingolipid transfer from membranes in vitro, the effect of SCP-2 expression on sphingolipid distribution to lipid rafts/caveolae in living cells was examined. Using a non-detergent affinity chromatography method to isolate lipid rafts/caveolae and non-rafts from purified L-cell plasma membranes, it was shown that lipid rafts/caveolae were highly enriched in multiple sphingolipid species including ceramides, acidic glycosphingolipids (ganglioside GM1); neutral glycosphingolipids (monohexosides, dihexosides, globosides), and sphingomyelin as compared to non-raft domains. SCP-2 overexpression further enriched the content of total sphingolipids and select sphingolipid species in the lipid rafts/caveolae domains. Analysis of fluorescence binding and displacement data revealed that purified human recombinant SCP-2 exhibited high binding affinity (nanomolar range) for all sphingolipid classes tested. The binding affinity decreased in the following order: ceramides > acidic glycosphingolipid (ganglioside GM1) > neutral glycosphingolipid (monohexosides, hexosides, globosides) > sphingomyelin. Enrichment of individual sphingolipid classes to lipid rafts/caveolae versus non-rafts in SCP-2 expressing plasma membranes followed closely with those classes most strongly bound to SCP-2 (ceramides, GM1 > the neutral glycosphingolipids (monohexosides, dihexosides, and globosides) > sphingomyelin). Taken together these data suggested that SCP-2 acts to selectively regulate sphingolipid distribution to lipid rafts/caveolae in living cells.  相似文献   

12.
13.
The late-onset type of Fabry disease (FD) with GLA IVS4 + 919G > A mutation has been shown to lead to cardiovascular dysfunctions. In order to eliminate variations in other aspects of the genetic background, we established the isogenic control of induced pluripotent stem cells (iPSCs) for the identification of the pathogenetic factors for FD phenotypes through CRISPR/Cas9 genomic editing. We adopted droplet digital PCR (ddPCR) to efficiently capture mutational events, thus enabling isolation of the corrected FD from FD-iPSCs. Both of these exhibited the characteristics of pluripotency and phenotypic plasticity, and they can be differentiated into endothelial cells (ECs). We demonstrated the phenotypic abnormalities in FD iPSC-derived ECs (FD-ECs), including intracellular Gb3 accumulation, autophagic flux impairment, and reactive oxygen species (ROS) production, and these abnormalities were rescued in isogenic control iPSC-derived ECs (corrected FD-ECs). Microarray profiling revealed that corrected FD-derived endothelial cells reversed the enrichment of genes in the pro-inflammatory pathway and validated the downregulation of NF-κB and the MAPK signaling pathway. Our findings highlighted the critical role of ECs in FD-associated vascular dysfunctions by establishing a reliable isogenic control and providing information on potential cellular targets to reduce the morbidity and mortality of FD patients with vascular complications.  相似文献   

14.
Abstract

The turnip is a traditional “medicine food homology” vegetable in China, but the processing of it remains traditional and limited. To increase and diversify the consumption of turnips, freeze drying (FD), explosion puff drying (EPD), infrared drying (ID), and hot air drying (AD) were used to produce turnip chips. FD chips maintained most of the starch, total sugar, vitamin C, and volume ratio, followed by EPD chips, which exhibited better crisp values and rehydration rate. These results suggest EPD as a favorable method for turnip chip production. The physicochemical properties of turnip chips dried using different methods differed greatly from each other. Principal component analysis revealed that FD produced the best chips, followed by EPD. Hierarchical cluster analysis and orthogonal projection on latent structure-discriminant analysis identified the volume ratio as the characteristic property of FD chips and the contents of soluble dietary fiber and insoluble dietary fiber as the characteristic properties of ID chips, which indicated that multivariate analyses may be used to classify dried products and identify their characteristic properties.  相似文献   

15.
FD模型应用于煤热解过程的数值模拟   总被引:2,自引:2,他引:0       下载免费PDF全文
虞君武  陈永利  何榕  张衍国 《化工学报》2014,65(9):3592-3598
为将煤热解FD模型引入对煤热解实际过程的数值计算与分析,提出了适用于煤热解实际过程的数值计算方法。分别对3种不同的煤在热管反应器中的热解过程进行了数值计算,并与实验结果以及已有的FG-DVC模型、CPD模型的数值计算结果进行了对比分析。并分析了热解温度、颗粒粒径对煤热解产物的影响。结果表明,与FG-DVC模型、CPD模型相比,FD模型的计算精度更高,能更好地用于数值计算煤热解的实际过程;随着热解温度的升高,气体产量先快速增大,当热解温度高于1373 K时,气体产量的变化很小;而随着热解温度的升高,焦油产量一直逐渐减小,且达到焦油产量最大值所需的时间也缩短;随着颗粒粒径的增大,气体与焦油的产量都逐渐减小,而达到焦油产量最大值所需的时间却延长。  相似文献   

16.
Flavescence dorée (FD) is a threat for wine production in the vineyard landscape of Piemonte, Langhe-Roero and Monferrato, Italy. Spread of the disease is dependent on complex interactions between insect, plant and phytoplasma. In the Piemonte region, wine production is based on local cultivars. The role of six local grapevine varieties as a source of inoculum for the vector Scaphoideus titanus was investigated. FD phytoplasma (FDP) load was compared among red and white varieties with different susceptibility to FD. Laboratory-reared healthy S. titanus nymphs were caged for acquisition on infected plants to measure phytoplasma acquisition efficiency following feeding on different cultivars. FDP load for Arneis was significantly lower than for other varieties. Acquisition efficiency depended on grapevine variety and on FDP load in the source plants, and there was a positive interaction for acquisition between variety and phytoplasma load. S. titanus acquired FDP with high efficiency from the most susceptible varieties, suggesting that disease diffusion correlates more with vector acquisition efficiency than with FDP load in source grapevines. In conclusion, although acquisition efficiency depends on grapevine variety and on FDP load in the plant, even varieties supporting low FDP multiplication can be highly susceptible and good sources for vector infection, while poorly susceptible varieties may host high phytoplasma loads.  相似文献   

17.
High energy consumption during freeze drying (FD) is a major concern that limits its application on common food product manufacturing. In this research, fresh duck egg white protein (FDEWP) powder and desalted duck egg white protein (DDEWP) powder were obtained by a combined two-stage tandem drying technologies (FD and microwave–vacuum drying [MVD]) in order to reduce energy consumption while maintaining good product quality. The results showed that the drying time for the FDEWP and DDEWP powders was significantly decreased by FD + MVD compared to those obtained by the FD-only process. The FDEWP powders dried by FD + MVD had a better color (higher L* and lower b*), lower apparent density, and lower foaming stability but higher emulsifying index than those dried by FD only. The DDEWP powder dried by FD + MVD had a product quality similar to that of FDEWP powder, suggesting that the DDEWP powder could be widely used as a food ingredient.  相似文献   

18.
As part of a systematic investigation of the glycosphingolipids in human tissues, acid and non-acid glycosphingolipids from human thyroid and parathyroid glands were isolated and characterized with mass spectrometry and binding of carbohydrate-recognizing ligands, with a focus on complex compounds. The glycosphingolipid patterns of the human parathyroid and thyroid glands were very similar. The major acid glycosphingolipids were sulfatide and the gangliosides GM3, GD3, GD1a, GD1b, GT1b and Neu5Ac-neolactotetraosylceramide, and the major non-acid glycosphingolipids were globotriaosylceramide and globoside. We also found neolactotetra- and neolactohexaosylceramide, the x2 glycosphingolipid, and complex glycosphingolipids with terminal blood group O and A determinants in both tissues. A glycosphingolipid with blood group Leb determinant was identified in the thyroid gland, and the parathyroid sample had a glycosphingolipid with terminal blood group B determinant. Immunohistochemistry demonstrated the expression of blood group A antigens in both the thyroid and parathyroid glands. A weak cytoplasmatic expression of the GD1a ganglioside was present in the thyroid, while the parathyroid gland had a strong GD1a expression on the cell surface. Thus, the glycosylation of human thyroid and parathyroid glands is more complex than previously appreciated. Our findings provide a platform for further studies of alterations of cell surface glycosphingolipids in thyroid and parathyroid cancers.  相似文献   

19.
20.
The reason behind the high inter-individual variability in response to SARS-CoV-2 infection and patient’s outcome is poorly understood. The present study targets the sphingolipid profile of twenty-four healthy controls and fifty-nine COVID-19 patients with different disease severity. Sera were analyzed by untargeted and targeted mass spectrometry and ELISA. Results indicated a progressive increase in dihydrosphingosine, dihydroceramides, ceramides, sphingosine, and a decrease in sphingosine-1-phosphate. These changes are associated with a serine palmitoyltransferase long chain base subunit 1 (SPTLC1) increase in relation to COVID-19 severity. Severe patients showed a decrease in sphingomyelins and a high level of acid sphingomyelinase (aSMase) that influences monosialodihexosyl ganglioside (GM3) C16:0 levels. Critical patients are characterized by high levels of dihydrosphingosine and dihydroceramide but not of glycosphingolipids. In severe and critical patients, unbalanced lipid metabolism induces lipid raft remodeling, leads to cell apoptosis and immunoescape, suggesting active sphingolipid participation in viral infection. Furthermore, results indicated that the sphingolipid and glycosphingolipid metabolic rewiring promoted by aSMase and GM3 is age-dependent but also characteristic of severe and critical patients influencing prognosis and increasing viral load. AUCs calculated from ROC curves indicated ceramides C16:0, C18:0, C24:1, sphingosine and SPTLC1 as putative biomarkers of disease evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号