首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Arachidonic acid is suggested to play a role in the expression of long-term potentiation (LTP), a synaptic analog of memory and learning. However, it is unknown whether this free fatty acid is actually released during LTP or not. To address this question, we assayed arachidonic acid with an HPLC system using 9-anthryldiazomethane (ADAM) as a fluorescent probe. High frequency stimulation (tetanic stimulation) to a hippocampal slice from the guinea pig brain caused a huge increase in the release of glutamate from presynaptic terminals and in turn, a gradual increase in the release of arachidonic acid. A similar increase in the release of arachidonic acid was induced by application of glutamate and the increase was inhibited by either the selective AMPA/kainate receptor antagonist, DNQX, or to a lesser extent by the selective NMDA receptor antagonist, APV. These findings suggest that arachidonic acid is produced by activation of ionotropic glutamate receptors involving expression of LTP. Arachidonic acid exerted a long-lasting facilitatory action on synaptic transmission in the CA1 region of rat hippocampal slices and the facilitation occluded the tetanic LTP. Arachidonic acid, thus, appears to be a significant factor for the expression of LTP.  相似文献   

2.
We have addressed the expression of long-term potentiation (LTP) in hippocampal CA1 by comparing AMPA and NMDA receptor-(AMPAR- and NMDAR-) mediated postsynaptic signals. We find that potentiation of NMDAR-mediated signals accompanies LTP of AMPAR-mediated signals, and is associated with a change in variability implying an increase in quantal content. Further, tetanic LTP of NMDAR-mediated signals can be elicited when LTP of AMPAR-mediated signals is prevented. We propose that LTP is mainly expressed presynaptically, and that, while AMPARs respond only to glutamate from immediately apposed terminals, NMDARs also sense glutamate released from terminals presynaptic to neighboring cells. We also find that tetanic LTP increases the rate of depression of NMDAR-mediated signals by the use-dependent blocker MK-801, implying an increase in the glutamate release probability. These findings argue for a presynaptic contribution to LTP and for extrasynaptic spill-over of glutamate onto NMDARs.  相似文献   

3.
A combination of experimental and modeling approaches was used to study cellular-molecular mechanisms underlying the expression of short-term potentiation (STP) and long-term potentiation (LTP) of glutamatergic synaptic transmission in the hippocampal slice. Electrophysiological recordings from dentate granule cells revealed that high-frequency stimulation of perforant path afferents induced a robust STP and LTP of both (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and N-methyl-D-aspartic acid (NMDA) receptor-mediated synaptic responses. However, the decay time constant for STP of the AMPA receptor-mediated excitatory postsynaptic potential was approximately 6 min, whereas the decay time constant for STP of the NMDA receptor-mediated excitatory postsynaptic potential was only 1 min. In addition, focal application of agonists during the expression of STP revealed that the magnitude of conductance change elicited by NMDA application was significantly enhanced, whereas the magnitude of conductance change elicited by application of AMPA remained constant. These findings are most consistent with a postsynaptic mechanism of STP and LTP. Different putative mechanisms were evaluated formally using a computational model that included diffusion of glutamate within the synaptic cleft, different kinetic properties of AMPA and NMDA receptor/channels, and geometric relations between presynaptic release sites and postsynaptic receptor/channels. Simulation results revealed that the only hypothesis consistent with experimental data is that STP and LTP reflect a relocation of AMPA receptor/channels in the postsynaptic membrane such that they become more closely "aligned" with presynaptic release sites. The same mechanism cannot account for STP or LTP of NMDA receptor-mediated responses; instead, potentiation of the NMDA receptor subtype is most consistent with an increase in receptor sensitivity or number.  相似文献   

4.
Optic nerve (ON) stimulation caused a postsynaptic field potential in the suprachiasmatic nucleus (SCN) of rat hypothalamic slices. The postsynaptic field potential was suppressed by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a non-NMDA receptor antagonist, in a concentration-dependent manner, but not affected by D-amino-5-phosphonovaleric acid (APV), a competitive NMDA receptor antagonist. Tetanic stimulation to the ON induced long-term potentiation (LTP) in the SCN. Application of APV at 50 microM inhibited the induction of LTP by tetanic stimulation but CNQX at lower dose (5 microM) didn't inhibit it. These results suggest that NMDA receptors are indispensable for the induction of LTP after tetanic stimulation.  相似文献   

5.
Several lines of evidence indicate that LTP in the hippocampus is associated with a change in the properties of postsynaptic glutamate receptors. In the present study, we used quantitative autoradiography to examine the binding properties of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) and N-methyl-D-aspartate subclasses of glutamate receptors in frozen brain sections obtained from rats in which perforant-path LTP was induced in vivo. Induction of LTP resulted in a selective increase in [3H]AMPA binding in those hippocampal subfields receiving perforant-path axons. Increases in [3H]AMPA binding in dentate gyrus (stratum moleculare) were highly correlated with the magnitude of LTP recorded in this structure. Scatchard analyses of [3H]AMPA and 6-cyano-7-nitro-[3H]quinoxaline-2,3-dione (an AMPA receptor antagonist) binding in the dentate gyrus indicated that LTP induction resulted in an increase in the number of AMPA receptor binding sites. No changes in the binding of 3H-labeled N-[1-(thienyl)cyclohexyl]piperidine (an N-methyl-D-aspartate receptor antagonist) were observed in any hippocampal subfield. These results suggest that a modification in postsynaptic AMPA receptors plays a role in the expression of synaptic enhancement following LTP induction in the hippocampus.  相似文献   

6.
7.
The avian hippocampus plays a pivotal role in memory required for spatial navigation and food storing. Here we have examined synaptic transmission and plasticity within the hippocampal formation of the domestic chicken using an in vitro slice preparation. With the use of sharp microelectrodes we have shown that excitatory synaptic inputs in this structure are glutamatergic and activate both NMDA- and AMPA-type receptors on the postsynaptic membrane. In response to tetanic stimulation, the EPSP displayed a robust long-term potentiation (LTP) lasting >1 hr. This LTP was unaffected by blockade of NMDA receptors or chelation of postsynaptic calcium. Application of forskolin increased the EPSP and reduced paired-pulse facilitation (PPF), indicating an increase in release probability. In contrast, LTP was not associated with a change in the PPF ratio. Induction of LTP did not occlude the effects of forskolin. Thus, in contrast to NMDA receptor-independent LTP in the mammalian brain, LTP in the chicken hippocampus is not attributable to a change in the probability of transmitter release and does not require activation of adenylyl cyclase. These findings indicate that a novel form of synaptic plasticity might underlie learning in the avian hippocampus.  相似文献   

8.
In the developing visual cortex activity-dependent refinement of synaptic connectivity is thought to involve synaptic plasticity processes analogous to long-term potentiation (LTP). The recently described conversion of so-called silent synapses to functional ones might underlie some forms of LTP. Using whole-cell recording and minimal stimulation procedures in immature pyramidal neurons, we demonstrate here the existence of functionally silent synapses, i.e., glutamatergic synapses that show only NMDA receptor-mediated transmission, in the neonatal rat visual cortex. The incidence of silent synapses strongly decreased during early postnatal development. After pairing presynaptic stimulation with postsynaptic depolarization, silent synapses were converted to functional ones in an LTP-like manner, as indicated by the long-lasting induction of AMPA receptor-mediated synaptic transmission. This conversion was dependent on the activation of NMDA receptors during the pairing protocol. The selective activation of NMDA receptors at silent synapses could be explained presynaptically by assuming a lower glutamate concentration compared with functional ones. However, we found no differences in glutamate concentration-dependent properties of NMDA receptor-mediated PSCs, suggesting that synaptic glutamate concentration is similar in silent and functional synapses. Our results thus support a postsynaptic mechanism underlying silent synapses, i.e., that they do not contain functional AMPA receptors. Synaptic plasticity at silent synapses might be expressed postsynaptically by modification of nonfunctional AMPA receptors or rapid membrane insertion of AMPA receptors. This conversion of silent synapses to functional ones might play a major role in activity-dependent synaptic refinement during development of the visual cortex.  相似文献   

9.
Supragranular pyramidal neurons in the adult rat auditory cortex (AC) show marked long-term potentiation (LTP) of population spikes after tetanic white matter stimulation (TS). For determination of whether this marked LTP is specific to AC, LTP in rat AC slices was compared with LTP in slices of the visual cortex (VC). The amplitude of TS-induced LTP in AC was twice that in VC. LTP of EPSPs was also studied with perforated patch or whole-cell recording. Although the amplitude of TS-induced LTP of EPSPs in AC was larger that in VC, no cortical difference was found in LTP elicited by low-frequency stimulation paired with current injection. Neocortical LTP is dependent on the activation of NMDA receptors, and induction of LTP requires postsynaptic depolarization for removal of Mg2+ blockade of NMDA receptors. The postsynaptic depolarization elicited by TS in supragranular pyramidal neurons in AC was significantly larger than that in VC. Cutting of supragranular horizontal connections resulted in a decrease in the depolarization amplitude in AC but an increase in the depolarization amplitude in VC. The cortical difference in TS-induced LTP was diminished in the slices in which horizontal connections in supragranular layers were cut. The estimated density of horizontal axon collaterals of supragranular pyramidal neurons in AC was approximately twice that in VC. These results strongly suggest that the marked polysynaptic and postsynaptic depolarization during TS and the resulting marked LTP in AC are attributed to well developed horizontal axon collaterals of supragranular pyramidal neurons in AC.  相似文献   

10.
Functional and immunocytochemical identification of glutamate autoreceptors of an NMDA type in crayfish neuromuscular junction. J. Neurophysiol. 80: 2893-2899, 1998. N-Methyl--aspartate (NMDA) reduces release from crayfish excitatory nerve terminals. We show here that polyclonal and monoclonal antibodies raised against the mammalian postsynaptic NMDA receptor subunit 1 stain specifically the presynaptic membrane of release boutons of the crayfish neuromuscular junction. In crayfish ganglionic membranes, the polyclonal antibody recognizes a single protein band that is somewhat larger (by approximately 30 kD) than the molecular weight of the rat receptor. Moreover, the monoclonal (but not the polyclonal) antibody abolishes the physiological effect of NMDA on glutamate release. The monoclonal antibody did not prevent the presynaptic effects of glutamate, which also reduces release by activation of quisqualate presynaptic receptors. Only when 6-cyano-7-nitroquinoxatine-2,3,dione (CNQX) was added together with the monoclonal antibody was the presynaptic effect of glutamate blocked. These results show that presynaptic glutamate receptors of the crayfish NMDA type are involved in the regulation of neurotransmitter release in crayfish axon terminals. Although the crayfish receptor differs in its properties from the mammalian NMDA receptor, the two receptors retained some structural similarity.  相似文献   

11.
To determine their roles in the assembly of glutamatergic postsynaptic sites, we studied the distributions of NMDA- and AMPA-type glutamate receptors; the NMDA receptor-interacting proteins alpha-actinin-2, PSD-95, and chapsyn; and the PSD-95-associated protein GKAP during the development of hippocampal neurons in culture. NMDA receptors first formed nonsynaptic proximal dendrite shaft clusters within 2-5 d. AMPA receptors were diffuse at this stage and began to cluster on spines at 9-10 d. NMDA receptor clusters remained partially nonsynaptic and mainly distinct from AMPA receptor clusters until after 3 weeks in culture, when the two began to colocalize at spiny synaptic sites. Thus, the localization of NMDA and AMPA receptors must be regulated by different mechanisms. alpha-Actinin-2 colocalized with the NMDA receptor only at spiny synaptic clusters, but not at shaft nonsynaptic or synaptic clusters, suggesting a modulatory role in the anchoring of NMDA receptor at spines. PSD-95, chapsyn, and GKAP were present at some, but not all, nonsynaptic NMDA receptor clusters during the first 2 weeks, indicating that none is essential for NMDA receptor cluster formation. When NMDA receptor clusters became synaptic, PSD-95 and GKAP were always present, consistent with an essential function in synaptic localization of NMDA receptors. Furthermore, PSD-95 and GKAP clustered opposite presynaptic terminals several days before either NMDA or AMPA receptors clustered at these presumptive postsynaptic sites. These results suggest that synapse development proceeds by formation of a postsynaptic scaffold containing PSD-95 and GKAP in concert with presynaptic vesicle clustering, followed by regulated attachment of glutamate receptor subtypes to this scaffold.  相似文献   

12.
Associative long-term potentiation (LTP) and depression of compound and unitary CA3-CA excitatory postsynaptic potentials (EPSPs) were investigated in rat hippocampal slice cultures. The induction of LTP with synchronous pairing of synaptic activation and postsynaptic depolarization resulted in an increase in the amplitude of EPSPs to the same absolute level, regardless of whether the input was naive or had been previously depressed by asynchronous pairing of pre- and postsynaptic activity. Saturated LTP of compound and unitary EPSPs was reversed by asynchronous pairing and could be reinduced by synchronous pairing. The likelihood that an action potential in a presynaptic CA3 cell failed to trigger an unitary EPSP in a postsynaptic CA1 cell decreased after induction of associative potentiation and increased after induction of associative depotentiation. These changes in the rate of transmission failures were accompanied by large changes in the amplitude of nonfailure EPSPs. We conclude that the same CA3-CA1 synapses can alternatively undergo associative potentiation and depression, perhaps through opposite changes in a single expression mechanism.  相似文献   

13.
1. Temporary suppression of glycolysis by 2-deoxy-D-glucose (2-DG)-long enough to abolish CA1 population spikes (PSs) and reduce field excitatory postsynaptic potentials (EPSPs) by two-thirds-is followed by a sustained rebound of EPSPs and PSs (both up by 70-150%). 2. Post 2-DG long-term potentiation (2-DG-LTP) is prevented by block of N-methyl-D-aspartate (NMDA) receptors (NMDARs). Though 2-DG-LTP is normally expressed by other receptors, in presence of picrotoxin 2-DG causes similar LTP of NMDAR-mediated EPSPs. 3. Stimulation at 1 s-1 fully depotentiates 2-DG-LTP. 4. Unlike tetanic LTP, 2-DG-LTP is not pathway-specific, is not occluded by a preceding tetanic LTP (or vice versa) and is insensitive to block of NO synthesis. 5. Hypoglycemic states may have long-lasting after-effects on cerebral synaptic function.  相似文献   

14.
This study was conducted to assess the role of ionotropic glutamate receptors in the modulation of calcium dynamics on both sides of a vertebrate plastic synapse. Retrograde labeling of neuronal elements with high-affinity calcium-sensitive dyes was used in conjunction with confocal imaging techniques in an in vitro lamprey brain stem preparation. A prolonged calcium transient was measured both pre- and postsynaptically in response to a period of high-frequency ("tetanic") stimulation to the vestibulospinal-reticulospinal synapse. The ionotropic glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (10 microM) and D,L-2-amino-5-phosphonopentanoate (D,L-AP5; 100 microM) reduced the calcium signal in both compartments of the synapse. The presynaptic D,L-AP5-sensitive component was enhanced markedly by the removal of Mg2+ from the superfusate. Increasing the extracellular stimulus intensity progressively augmented the presynaptic calcium signal, suggesting the recruitment of excitatory axo-axonic inputs onto these fibers. Further, the presence of an excitatory amino acid-mediated presynaptic potential underlying a component of the Ca2+ signal was demonstrated by electrophysiological recordings from vestibulospinal axons. Bath application of agonist, in the presence of tetrodotoxin (1 microM), confirmed the existence of N-methyl-D-aspartate receptors at the presynaptic element capable of modulating calcium levels. The postsynaptic Ca2+ response, which is known to be necessary for long-term potentiation (LTP) induction at this synapse, was localized to areas of the dendritic tree that correlated with the location of known synaptic inputs; thus the synaptically activated rise in postsynaptic calcium may confer the synapse specificity of LTP induction previously demonstrated. In summary, we have demonstrated the existence of physiologically activated presynaptic ionotropic glutamate receptors that are capable of modulating levels of intracellular calcium and have highlighted the importance of receptor-mediated increases in postsynaptic calcium for neuronal plasticity in the lamprey.  相似文献   

15.
Long-term potentiation (LTP) of excitatory transmission is an important candidate cellular mechanism for the storage of memories in the mammalian brain. The subcellular phenomena that underlie the persistent increase in synaptic strength, however, are incompletely understood. A potentially powerful method to detect a presynaptic increase in glutamate release is to examine the effect of LTP induction on the rate at which the use-dependent blocker MK-801 attenuates successive N-methyl-D-aspartic acid (NMDA) receptor-mediated synaptic signals. This method, however, has given apparently contradictory results when applied in hippocampal CA1. The inconsistency could be explained if NMDA receptors were opened by glutamate not only released from local presynaptic terminals, but also diffusing from synapses on neighboring cells where LTP was not induced. Here we examine the effect of pairing-induced LTP on the MK-801 blocking rate in two afferent inputs to dentate granule cells. LTP in the medial perforant path is associated with a significant increase in the MK-801 blocking rate, implying a presynaptic increase in glutamate release probability. An enhanced MK-801 blocking rate is not seen, however, in the lateral perforant path. This result still could be compatible with a presynaptic contribution to LTP in the lateral perforant path if intersynaptic cross-talk occurred. In support of this hypothesis, we show that NMDA receptors consistently sense more quanta of glutamate than do alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. In the medial perforant path, in contrast, there is no significant difference in the number of quanta mediated by the two receptors. These results support a presynaptic contribution to LTP and imply that differences in intersynaptic cross-talk can complicate the interpretation of experiments designed to detect changes in transmitter release.  相似文献   

16.
The associations of glutamate receptor subunits (NMDAR1, AMPA GluR1 and GluR2/3) and spinothalamic tract neurons in the rat lumbar spinal cord dorsal horn were investigated. Staining for NMDAR1 and AMPA GluR1 and GluR2/3 receptor subunits was observed throughout the spinothalamic tract soma and dendrites, particularly in association with the rough endoplasmic reticulum and some postsynaptic membrane sites. Immunostaining for NMDAR1 and AMPA GluR2/3 was also noted in presynaptic membrane sites. Localization of both NMDA and AMPA glutamate receptor subunits in association with spinothalamic tract neurons provides anatomical evidence in support of the various interactions reported for glutamate receptors in nociception. Presynaptic localization of the AMPA GluR2/3 receptor subunit suggests that spinothalamic tract cells may also be affected presynaptically by AMPA glutamate receptor interactions.  相似文献   

17.
The modulatory influence of aniracetam, a drug which reversibly modifies the kinetic properties of AMPA-type glutamate receptors, on synaptic responses is reported to be detectably changed by the induction of long-term potentiation (LTP). The present study used hippocampal slices to examine three issues arising from this result. First, possible contributions of inhibitory currents and postsynaptic spiking to the aniracetam/LTP interaction were investigated with infusions of GABA receptor antagonists and topical applications of tetrodotoxin. Second, tests were carried out to determine if the altered response to aniracetam is sufficiently persistent to be a plausible substrate for the extremely stable LTP effect. Third, the nature of the change responsible for the aniracetam/LTP interaction was explored with waveform analyses and a kinetic model of the AMPA receptor. The following results were obtained. LTP reduced the effect of aniracetam on the amplitude but increased its effect on the decay time constant of field EPSPs recorded under conditions in which local spiking and inhibitory responses were blocked. The LTP-induced change in the effect of aniracetam was extremely stable in that it was still evident 75 min after induction of potentiation. Finally, the waveform distortions introduced by LTP and aniracetam could be corrected by uniform stretching of the responses, suggesting that the changes introduced by each of the manipulations are unitary in nature. These distortions and the interactions between them could be reproduced in the AMPA receptor model by representing LTP as an acceleration of channel gating kinetics.  相似文献   

18.
By intracellular and whole cell recording in rat brain slices, it was found that bath-applied serotonin (5-HT) produces an increase in the frequency and amplitude of spontaneous excitatory postsynaptic potentials/currents (EPSPs/EPSCs) in layer V pyramidal cells of neocortex and transitional cortex (e.g. medial prefrontal, cigulate and frontoparietal). The EPSCs were suppressed by LY293558, an antagonist selective for the AMPA subtype of excitatory amino acid receptor, and by two selective 5-HT2A receptor antagonists, MDL 100907 and SR 46349B. In addition, the EPSCs were suppressed by the fast sodium channel blocker tetrodotoxin (TTX) and were dependent upon external calcium. However, despite being TTX-sensitive and calcium dependent, there was no evidence that the EPSPs resulted from an increase in impulse flow in excitatory neuronal afferents to layer V pyramidal cells. The EPSCs could be induced rapidly by the microiontophoresis of 5-HT directly to "hot spots" within the apical (but not basilar) dendritic field of recorded neurons, indicating that excitatory amino acids may be released by a TTX-sensitive focal action of 5-HT on a subset of glutamatergic terminals in this region. Consistent with such a presynaptic action, the inhibitory metabotropic glutamate receptor agonist (1S,3S)-aminocyclopentane-1,3-dicarboxylate markedly reduced the induction of EPSPs by 5-HT. Postsynaptically, 5-HT enhanced a subthreshold TTX-sensitive sodium current, potentially contributing to an amplification of EPSC amplitudes. These data suggest 5-HT. via 5-HT2A receptors, enhances spontaneous EPSPs/EPSCs in neocortical layer V pyramidal cells through a TTX-sensitive focal action in the apical dendritic field which may involve both pre- and postsynaptic mechanisms.  相似文献   

19.
Investigations indicate that the induction of long-term potentiation (LTP) may be mediated by postsynaptic N-methyl-D-aspartate (NMDA) receptors and that the maintenance of LTP may be initiated by nitric oxide (NO), a retrograde messenger carrying signals backward from the postsynaptic to the presynaptic neuron. The present study compared amnestic effects of dizocilpine maleate (MK-801), an NMDA receptor antagonist, and nitro-L-arginine-methyl-ester (L-NAME) and N-nitro-L-arginine (L-NOARG), nitric oxide (NO) inhibitors, in goldfish, using active-avoidance conditioning as the learning paradigm. The results showed that MK-801 and NO inhibitors produced anterograde amnesia at doses that did not impair performance processes necessary for learning to occur. Furthermore, MK-801 did not produce retrograde amnesia, whereas L-NAME did, suggesting that MK-801 impaired learning whereas NO inhibitors impaired memory consolidation and possibly also learning. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

20.
The prelimbic region of medial frontal cortex in the rat receives a direct input from the hippocampus and this functional connection is essential for aspects of spatial memory. Activity-dependent changes in the effectiveness of synaptic transmission in the medial frontal cortex, namely long-term potentiation (LTP) and long-term depression (LTD) can persist for tens of minutes or hours and may be the basis of learning and memory storage. Glutamatergic activation of ionotropic receptors is required to induce both LTP and LTD. We now present evidence of the involvement of metabotropic glutamate receptors in LTP in isolated slices of frontal cortex. Repetitive bursts of stimulation at theta frequencies (TBS) were applied to layer II, and monosynaptic EPSPs were monitored in layer V neurons of the prelimbic area. TBS was found to be more effective at inducing LTP than tetanic stimulation at 100 Hz and produced LTP that lasted >30 min in 8 out of 14 neurons. Tetanic stimulation at 100 Hz in the presence of the N-methyl--aspartate (NMDA)-antagonist 2-amino-5-phosphonopentanoate (AP5) was reported to be a reliable method of inducing LTD in prelimbic cortex (). However we found that this protocol did not facilitate the induction of LTD. The role of metabotropic glutamate receptors (mGluR) in LTP was assessed by using the selective, broad-spectrum antagonist (R, S)-alpha-methyl-4- carboxyphenylglycine (MCPG). This drug significantly reduced the incidence of LTP after TBS to only 1 of 14 neurons (P < 0.02, chi2 test). The pooled responses to TBS in MCPG showed significantly reduced potentiation [(P < 0.02, analysis of variance (ANOVA)]. The broad-spectrum mGluR agonist (1S, 3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) and the selective group I agonist S-3 hydroxyphenylglycine(S-3HPG) both produced membrane depolarization, an increase in number of spikes evoked by depolarizing current pulses, and a reduction in the afterhyperpolarization. Similar effects were produced by these agonists even when synaptic transmission was blocked by use of the gamma-aminobutyric acid-B (GABAB) receptor agonist, 200 microM baclofen, which suggests that group I mGluRs are present on layer V neurons. We conclude that mGluRs participate in the production of LTP in prelimbic cortex, and that this excitatory effect could be mediated by the postsynaptic group I mGluRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号