首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
控制酶解小麦面筋蛋白的研究   总被引:11,自引:0,他引:11  
系统地研究了酶水解小麦面筋蛋白的最佳工艺条件,采用SDS—PAGE分析了酶解前后小麦面筋蛋白的变化,并对流变学特性进行了分析测定。结果表明,酶解最佳条件为:底物浓度10%,酶浓度0.05%,水解时间1h,pH7.0,温度35℃。  相似文献   

2.
BACKGROUND: The low solubility of wheat gluten is one of the major limitations to its use in food processing, and enzymatic hydrolysis has been found to be an effective way to prepare more soluble bioactive peptides from gluten. The aim of this study was to prepare bioactive peptides from modified wheat gluten (MWG) in a continuous enzymatic membrane reactor (EMR) that allowed rapid separation of low‐molecular‐weight peptides from hydrolysates, thus avoiding the disadvantages of batch reaction such as inefficient use of enzymes, inconsistent products due to batch‐to‐batch variation, substrate–product inhibition, low productivity and excessive hydrolysis. RESULTS: Wheat gluten was modified to decrease its lipid and starch contents in order to prevent membrane fouling. The optimal working conditions for Alcalase to hydrolyse MWG in the EMR were a substrate concentration of 20 g L?1, an enzyme/substrate ratio of 0.03, an operating pressure of 0.04 MPa, a temperature of 40 °C and a pH of 9. The operating stability of the EMR (including residual enzyme activity, productivity and capacity) was high. The permeate fractions showed antioxidant activities that were mostly due to low‐molecular‐weight peptides. A simple theoretical kinetic model was successfully applied to the enzymatic hydrolysis of MWG in the EMR. CONCLUSION: Modification of wheat gluten made the continuous enzymatic membrane reaction more efficient and the EMR proved to be an effective means of producing peptides with particular properties and bioactivities. The permeate fractions (mainly < 1000 Da) were homogeneous and stable and also showed strong antioxidant activities. Copyright © 2011 Society of Chemical Industry  相似文献   

3.
The insolubility of gluten in aqueous solutions is one of the major limitations for its more extensive use in food processing. Wheat gluten was enzymatically hydrolyzed by several commercially available proteases (Alcalase 2.4L, PTN 6.0S, Pepsin, Pancreatin, Neutrase and Protamex™) with protein recovery of 81.3%, 42.5%, 53.3%, 61.6%, 46.3% and 43.8%, respectively. The hydrolytic efficiency of these proteases on wheat gluten was also compared. Alcalase served best for the preparation of wheat gluten hydrolysates with the maximum degree of hydrolysis (DH) 15.8%. Subsequently, the solubility of wheat gluten hydrolysates (WGHs) obtained with those enzymes was comparably evaluated. The products had excellent solubility (>60%) over a pH range of 2–12. The molecular weight distribution of WGHs was further determined by SDS-PAGE and size exclusion chromatography on Sephadex G-15. The results showed that with the increasing of DH values, there occurred a large amount of smaller polypeptides.  相似文献   

4.
挤压预处理后小麦面筋蛋白酶解特性的变化   总被引:2,自引:0,他引:2  
小麦面筋蛋白经挤压预处理后,利用复合蛋白酶(Protamex)和木瓜蛋白酶(Papain)酶解。与未挤压的酶解产物相比较,经挤压预处理后的酶解产物水解度明显提高(77%~122%),鲜味明显增强,但蛋白质回收率有所下降。挤压预处理后的小麦面筋蛋白酶解产物高分子组分减少,低分子组分显著增加,面筋蛋白酶解液中的鲜味物质以小分子肽和游离氨基酸为主。  相似文献   

5.
ABSTRACT:  The aim of this study is to investigate the characteristics of wheat gluten hydrolysates. Enzymatic hydrolysis was performed using a papain (food-grade enzyme) in the present study. The gluten proteins were hydrolyzed for 8 h. During enzymatic hydrolysis, average peptide chain length in the hydrolysate decreased rapidly. Increasing proteolysis resulted in the increase in the contents of the soluble forms of nitrogen. However, the content of peptide nitrogen increased within the 1st 6 h, and then began to decrease. The percentage of the released peptides with molecular weight (MW) of over 15 kD decreased with extending enzymatic hydrolysis, while those with MW below 5 kD increased significantly ( P < 0.05). The peptides with MW 10 to 15 kD and those having the MW 5 to 10 kD had different changes. The polymeric glutenin and monomeric gliadin in gluten complex showed different behavior after enzymatic hydrolysis. The monomeric protein (gliadin) and soluble glutenin were prone to enzymatic hydrolysis, while insoluble glutenin was resistance to enzymatic hydrolysis.  相似文献   

6.
胃蛋白酶水解小麦蛋白工艺的研究   总被引:5,自引:0,他引:5  
以小麦蛋白为原料,采用胃蛋白酶对其水解工艺进行优化。以水解度、小麦肽的得率为响应值,设计了四因素三水平的中心组合响应面试验。通过优化组合得到最佳水解条件为温度37℃、pH2、底物浓度1%和加酶量1500U/g,此时水解度为7.8%,小麦肽的得率为55.95%。  相似文献   

7.
以活性谷朊粉为原料,研究超声作用及超声功率对不同的底物浓度、酶浓度、反应温度、pH经中性蛋白酶水解的谷朊粉水解度的影响。结果表明,超声作用既不改变酶解反应的最适温度和pH,也不改变水解度与水解温度、pH、底物浓度、酶浓度之间关系曲线的变化趋势,但超声作用可明显提高水解度;200W的超声波对中性蛋白酶水解谷朊粉具有明显的促进作用。  相似文献   

8.
小麦面筋蛋白盐酸脱酰胺工艺优化及其酶解敏感性   总被引:2,自引:0,他引:2  
文以小麦面筋蛋白为原料,优化了盐酸对小麦面筋蛋白的脱酰胺工艺,比较了最佳脱酰胺工艺下的小麦面筋蛋白在胰酶、风味蛋白酶和碱性蛋白酶酶解过程中蛋白回收率和水解度的变化,并对其酶解36 h酶解液的自由基吸收能力(ORAC)抗氧化特性进行分析评价。研究结果表明,盐酸脱酰胺的工艺条件是:小麦面筋蛋白浓度为24%,0.30 mol/L的HCl,65℃,24 h脱酰胺;在该工艺条件下,胰酶酶解液蛋白回收率和水解度最高,酶解效果最好;高脱酰胺程度小麦面筋蛋白在胰酶酶解36h后酶解液的蛋白回收率和水解度高于低脱酰胺程度的酶解液;ORAC抗氧化特性分析表明高脱酰胺程度小麦面筋蛋白酶解液的ORAC值高于低脱酰胺程度的酶解液,其ORAC值最高为(689.67±10.22)μmol Trolox/g。  相似文献   

9.
The water-insolublity of wheat gluten is one of the major limitations for its more extensive use in food processing. Wheat gluten was enzymatically hydrolyzed by several commercially available proteases (Pancreatin Trypsin 6.0S, Porcine pepsin, Pancreatin and Alcalase 2.4L) with protein recovery varying from 42.5 ± 0.7% to 81.3 ± 0.1%. The hydrolytic efficiency of these proteases on wheat gluten was also compared. Alcalase served best for the preparation of wheat gluten hydrolysates (WGHs). Thus, Alcalase-assisted hydrolysates of wheat gluten (AWGHs) with different degrees of hydrolysis (DH 5.0, 10.0 and 15.0%) were further assessed for their functionalities. All the AWGHs had excellent solubility (>60%) over a pH range of 2–12. The emulsifying and foaming properties of AWGH with relatively low DH (5.0%) were remarkably higher compared to the original gluten. However, extensive hydrolysis of gluten resulted in remarkable reduction in emulsifying and foaming properties.  相似文献   

10.
小麦面筋蛋白由于其溶解性较差,限制了其应用,实验利用酶法水解能有效提高小麦面筋蛋白的溶解度。通过单因素实验及正交实验优化了碱性蛋白酶与中性蛋白酶复合水解小麦面筋蛋白的最佳工艺条件。实验结果表明:复合酶配比(碱性蛋白酶∶中性蛋白酶)为5∶5,水解温度为55℃,复合酶浓度为1.0%,底物浓度为5%,水解初始pH为8.0,水解时间为3.5h时面筋蛋白的水解度最高,水解度可达14.6%。   相似文献   

11.
BACKGROUND: The number and surface nature of amino acids (AAs) in substrate proteins available to hydrolytic enzymes are critical. Among them, the micro‐environmental properties of specific AAs in substrates before hydrolysis would probably dominate the susceptibility of substrates to enzymatic hydrolysis. Fundamental knowledge concerning this regard is lacking. The objective of this work was to investigate the relationship between the exposure level of AAs in acid‐deamidated wheat gluten and their susceptibilities to in vitro enzymatic hydrolysis by pancreatin through both high‐performance liquid chromatography and Raman spectra. Wheat gluten deamidated with HCl (HDWG), citric acid (CDWG), succinic acid (SDWG) and acetic acid (ADWG) at the same degree of deamidation under the same heat treatment were chosen as the substrates. Substrate characterisations including degree of hydrolysis, surface hydrophobicity and structural characteristics before hydrolysis, together with analysis of free AAs of the corresponding hydrolysates during hydrolysis, were investigated. RESULTS: Hydrolysates from SDWG had the highest value for the degree of hydrolysis. The susceptibility of CDWG to pancreatin hydrolysis was the lowest, lower than native wheat gluten (CK) after the initial 36 h. Compared with free AAs, the mole increase profiles of CK, Arg production levelled off in HDWG after 12 h whereas it was inhibited in ADWG. For SDWG, Arg release was dramatically inhibited after 12 h and was replaced by Trp. Investigations using Raman spectra of the micro‐environment of Cys, Trp, Tyr and His and the mole increase trend of them indicated that the exposure level of these amino acids in substrates was positively related to their susceptibilities to pancreatin hydrolysis especially after 24 h of hydrolysis. CONCLUSION: Deamidation by four acids has a distinct influence on the structural characteristics of wheat gluten substrates. Although the substrates were selected at the same level of deamidation by the same heat treatment, their resultant conformational differences significantly influenced the exposure level of amino acids for binding to enzymes and the susceptibility of substrates to in vitro enzymatic hydrolysis. Therefore, it had an influence on changing enzyme cutting sites of pancreatin. This information will provide a better understanding of specific behaviour of AAs in wheat gluten during enzymatic hydrolysis from a new perspective. Copyright © 2012 Society of Chemical Industry  相似文献   

12.
胰蛋白酶水解谷朊粉制备多肽的工艺优化   总被引:1,自引:0,他引:1  
为提高谷朊粉蛋白的加工性能及功能性质,考察了胰蛋白酶水解谷朊粉蛋白制备水溶性多肽的工艺。采用单因素及响应面试验法对影响谷朊粉蛋白酶解工艺的多个因素进行了分析,通过试验优化确定了谷朊粉蛋白适宜的酶解工艺条件为:谷朊粉蛋白质量浓度3 g/100 mL,加酶量为4 056 U/g,pH 11,温度48 ℃,时间为4 h。在优化的工艺条件下,谷朊粉蛋白的水解度可以达到8.03%,水溶性多肽得率为64.2%。试验结果表明,利用胰蛋白酶的水解作用将谷朊粉蛋白转化为水溶性的多肽具有可行性。  相似文献   

13.
目的 研究分步酶解小麦面筋蛋白(wheat gluten, WG)制备低苦味肽粉的工艺。方法 选用中性蛋白酶、木瓜蛋白酶、胃蛋白酶水解WG至8%水解度,接着用风味蛋白酶对水解产物进行脱苦处理,对不同酶解产物中苦味肽的特性进行系统研究,探究苦味肽含量、氨基酸组成、分子量分布、表面疏水性等指标变化对WG酶解物苦味值的影响,对比风味蛋白酶对不同单酶酶解物的脱苦效果差异,分析风味蛋白酶对WG酶解物脱苦的内在机理,进而确定制备低苦味小麦蛋白肽粉的最佳酶解工艺。结果 中性蛋白酶的酶解产物经风味蛋白酶作用后,脱苦效果最显著,苦味肽苦味值从4.08降至2.25,酶解产物的苦味值可下降56.42%。木瓜蛋白酶的酶解产物经风味蛋白酶作用4 h后,酶解产物的苦味值最低,制备出苦味值为1.28的WG低苦味肽粉。结论 经分步酶解作用后,酶解产物中苦味肽的含量下降;疏水性氨基酸比例的下降和游离氨基酸含量的升高引起苦味肽苦味阈值的增大,共同导致酶解产物苦味值显著降低,该研究为酶解脱苦技术的快速发展和WG活性肽工业化生产提供新的参考。  相似文献   

14.
酸性蛋白酶降解小麦面筋蛋白的研究   总被引:1,自引:0,他引:1  
以DPPH自由基清除率为指标,采用单因素和正交实验研究了酸性蛋白酶木瓜蛋白酶(精)对小麦面筋蛋白水解最适条件.结果表明,最佳酶解条件为温度70℃,pH6.0,底物量7 g,水解时间5 h;在此条件下,DPPH自由基清除率达到92.65%,效果显著.  相似文献   

15.
16.
利用碱性蛋白酶(Alcalase)、风味蛋白酶(Flavourzyme)和复合蛋白酶(Protamex)对高底物浓度(135g/L)玉米蛋白进行双酶复合水解,研究复合水解对水解物的水解度、可溶性蛋白质含量和抗氧化活性的影响,并对双酶酶解效果较好的酶解液进行了分子量分布测定。结果表明,Flavourzyme和Alcalase、Flavourzyme和Protamex、Protamex和Alcalase顺次水解玉米黄粉,总水解度分别为27.11%、26.95%和19.76%,可溶性蛋白质含量分别为50.33、40.32、48.85mg/ml,抗氧化活性分别为634.35、576.79和593.21 U/ml。多肽分子量主要分布在5 801.170~238.962u,与单酶水解相比均有显著提高。  相似文献   

17.
为了改善谷朊粉在水溶液中的物化性能,利用碱性蛋白酶对谷朊粉进行了有限水解。通过单因素实验,分析了底物浓度、反应温度、加酶量和反应时间对其分散稳定性、胶黏性的影响,并分析了酶解物中的蛋白质分子粒径。通过正交实验确定了以提高谷朊粉分散特性和胶黏性为目的的最佳酶解条件为:底物浓度0.30g/mL、温度50℃、加酶量0.50%、反应时间20min,此时可使谷朊粉的相对分散稳定性达到96.3%,黏度为3.2mPa.s,蛋白质平均分子粒径604.6nm。分析显示,不同酶解样品分散稳定性、黏度和蛋白质平均分子粒径三种指标之间的变化趋势并不完全一致。  相似文献   

18.
BACKGROUND: During slaughter a hog produces approximately 3 L of blood. However, only a small proportion of porcine blood is currently used in food, feed or fertiliser, most of it being treated as waste and discarded. In this study the possibility of hydrolysing porcine blood proteins by enzyme in a membrane reactor for the production of bioactive peptides was investigated. Red blood corpuscles, blood plasma and defibrinated blood plasma were hydrolysed by various proteases, and the hydrolysates were evaluated for bioactive properties. RESULTS: The hydrolysate produced by hydrolysing red blood corpuscles with a mixture of trypsin, chymotrypsin and thermolysin had the highest angiotensin I‐converting enzyme (ACE)‐inhibitory activity (IC50 = 0.58 mg mL?1) and scavenging effect on α,α‐diphenyl‐β‐picrylhydrazyl (DPPH) (65%) after 6 and 10 h of hydrolysis respectively. When the hydrolysis was carried out in an enzymatic membrane reactor with an enzyme/substrate ratio of 1:5 and a residence time of 100 min, the process reached steady state in 2 h. The ACE‐inhibitory activity of the product during the steady state process was 86% and its scavenging effect on DPPH was 54%. The membrane process also decolourised the enzyme‐hydrolysed product, thus improving the appearance of the product. CONCLUSION: This study demonstrated that hydrolysates of porcine blood possess antihypertensive and antioxidant activities. Using red blood corpuscles as the substrate, the hydrolysis could be carried out in a membrane reactor with a mixture of proteases to produce bioactive peptides continuously. Therefore processing of porcine blood in an enzymatic membrane reactor is a potential method for producing a health‐promoting product. Copyright © 2008 Society of Chemical Industry  相似文献   

19.
以小麦淀粉生产的副产物谷朊粉为原料,通过单因素实验和正交实验研究酶解时间、底物浓度、酶浓度、溶液pH、酶解温度对谷朊粉水解度的影响,探索碱性蛋白酶酶解小麦谷朊粉的最佳工艺条件。分析发现五个因素对谷朊粉水解度的影响由强到弱的次序依次为:溶液pH>酶解温度>酶浓度>底物浓度>酶解时间;结果表明:酶解时间3h、底物浓度9%、酶浓度4%、底物pH=8.0、55℃时谷朊粉的水解度最高,此时谷朊粉的水解度为22.96%。在最佳水解条件下通过Tricine SDS-PAGE确定谷朊粉蛋白多肽的分子量分布范围在8.0450.12ku之间。   相似文献   

20.
复合蛋白酶水解谷朊粉制备生物活性肽的研究   总被引:7,自引:0,他引:7  
以谷朊粉为原料,用复合蛋白酶水解,制备生物活性肽,并对其水解工艺进行优化。以水解度、肽含量和还原力为响应值设计了4因素(酶浓度、时间、温度、pH值)3水平的响应面实验,通过响应面实验得到最佳水解条件为:时间3h、pH7.3、温度54℃、酶浓度[E/S]是35mg/g和谷朊粉浓度3%,此时水解度为7.5%,还原力达到最大值0.573,肽含量为0.148mg/mL。结果表明,谷朊粉的水解物———小麦肽具有抗氧化能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号