首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 276 毫秒
1.
酸解时间对大米淀粉结构性质的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
以4种不同直链淀粉含量的大米淀粉(0%的优糯3号、10.90%的稻花灿、21.03%的聚两优、28.46%的华优香占)为原料,酸解处理不同时间,以酸解大米淀粉的酸解率、颗粒形貌、结晶性质、溶解度的变化为指标衡量不同酸解时间对大米淀粉结构及性质的影响。结果表明,不同直链淀粉含量的大米淀粉具有不同的耐酸性,酸解时间对不同直链淀粉含量大米淀粉的结构和性质有着不同的影响。大米淀粉酸解率与直链淀粉含量成反比,优糯3号为50%而华优香占仅为30%;所有淀粉颗粒在酸解后均产生一定程度的破碎,偏光十字变形直至消失,酸解相同时间,直链淀粉含量高的大米淀粉破碎率低;酸解未改变淀粉的晶型,仍为A晶型;随着酸解时间的延长相对结晶度增加;淀粉的溶解度随着酸解时间的增加而增大。  相似文献   

2.
以4种不同链/支比含量的玉米淀粉为原料,酸解处理不同时间,以酸解玉米淀粉的形貌特性、冻融稳定性、膨胀度、溶解度、晶体性质为指标衡量不同酸解时间对玉米淀粉结构性质的影响。结果表明:4种玉米淀粉酸水解程度的顺序为:蜡质玉米普通玉米淀粉G50G80。酸解后,同品种的4种玉米淀粉的析水率随着酸解天数的增加而增加;溶解度增加,膨胀度降低。酸解并未改变淀粉的晶型,随着酸解时间的延长,蜡质玉米淀粉和普通玉米的相对结晶度先增大后保持不变,G50和G80的相对结晶度随着酸解时间的增加而增大。表明酸解对低直链淀粉(蜡质玉米淀粉和普通玉米淀粉)的结构、性能影响最大。  相似文献   

3.
Comparative studies on acid hydrolysis of jicama and maize starch were carried out using concentrations of hydrochloric acid of 1.5%, 3.0%, and 4.5% (w/v), for 3 and 6 h, at 40°C. Native maize and jicama starches showed important morphological, thermal, and structural differences from those of tubers and cereals which potentially offer diverse industrial applications. Jicama starch showed low amylose content (12%) and small size of starch granules. Due to these characteristics, jicama starch was more susceptible to degradation during hydrolysis process than maize starch. Under the experimental conditions employed, the acid degradation was not particularly severe, as shown by scanning electronic microscopy analysis which showed small degraded zones and similar X-ray patterns in both starches. However, jicama starch was more susceptible to acid hydrolysis than maize starch, as revealed by the considerable increase in water solubility index, damaged starch, and crystallinity values. Also, the higher susceptibility of jicama starch than maize starch to the hydrolysis conditions was reflected in the sugar content release during hydrolysis. The relative crystallinity of hydrolyzed maize starches decreased during hydrolysis, while those of hydrolyzed jicama starches increased attributable to the lower amylose content of jicama starch in relation to maize starch. Maize and jicama hydrolyzed starches showed low viscosity values with relation to their native starch counterparts. However, native jicama starch showed lower viscosity values than maize starch, suggesting a lower internal stability of the starch granules during hydrolysis. Both native and hydrolyzed maize starches showed higher enthalpy, T o, T p, and T c values than jicama starch and the broadening of the endotherms decreased during the hydrolysis of both starches.  相似文献   

4.
Tapioca starch was partially hydrolyzed in hydrochloric acid solution at room temperature for various lengths of time to obtain high‐crystalline starches. RVA viscoamylograms of acid‐modified starches demonstrated a very low viscosity as compared to that of native tapioca starch. The relative crystallinity of native and acid‐modified tapioca starches were measured by X‐ray diffraction ranging from 39.53% to 57.75%. The native and acid‐modified tapioca starches were compressed into tablets using various compression forces. The % relative crystallinity of starch increased with the increase in hydrolysis time and the crushing strength of the tablet was also increased in line with the crystallinity while the amylose content decreased when the crystallinity increased. These results suggested that the erosion of amylose might cause the rearrangement of starch structure into a new more tightly packed form, which provided the higher crushing strength for the tablets.  相似文献   

5.
不同链淀粉含量玉米微晶淀粉理化性质研究   总被引:2,自引:1,他引:2  
分别以蜡质玉米淀粉、玉米淀粉及高直链玉米淀粉为原料,在酸醇介质中制备不同水解率微晶淀粉,测定不同微晶淀粉水解性能并研究其颗粒形貌、结晶结构、溶解度及消化性。结果表明:淀粉颗粒内部结构致密性依次减弱,支链淀粉含量高的淀粉较易被试剂进攻;经酸醇处理后,三种微晶淀粉均保留原来晶型,颗粒形态没明显变化,没破碎和膨胀出现,但颗粒表面变粗糙;随直链淀粉含量增加,相似条件(水解率和温度)淀粉溶解度逐渐降低;in-vitro消化体系中三种淀粉及其微晶淀粉消化速度依次降低。  相似文献   

6.
Acid thinned jicama and maize starches as fat substitute in stirred yogurt   总被引:1,自引:0,他引:1  
Jicama and maize starches were hydrolyzed with HCl (1.5, 3.0 or 4.5 g/100 g of starch), at a temperature of 40 °C using two hydrolysis times (3 and 6 h). The acid degradation of both starches was not excessive as revealed by the positive blue value, amylose content, gel formation and gel thermo-reversibility. Jicama starches were more susceptible to acid hydrolysis than maize starches. Hydrolyzed jicama starches showed low values of gel strength and water solubility index, and high values of damaged starch, total sugar content and water absorption index. Stirred yogurt formulated with hydrolyzed starches showed different properties of syneresis index according to the starch type and hydrolysis conditions. Yogurt samples with hydrolyzed jicama starches added did not show significant differences in pH and viscosity. Sensorial testing showed that it is possible to produce yogurt with good functional and sensorial properties using hydrolyzed jicama starches as a fat substitute.  相似文献   

7.
Properties of residual starches of sugary-2 opaque-2 and sugary-2 maize starch granules hydrolyzed with glucoamylases were investigated. A crude and two crystalline glucoamylases were used. The amylopectin fractions of both starches hydrolyzed easier than that of amylose with all enzymes. Residual starches hydrolyzed by the crude glucoamylase accumulated low-molecular weight materials, which was not observed in residual starches attacked by crystalline glucoamylase. It was suggested that in the crude enzyme the contaminating α-amylase caused the accumulation of the minified fraction. It is also suggested that the crystalline region of sugary-2 opaque-2 starch may consist of a mixture of A-type and B-type patterns. Evidence for this was from observation of the changes in X-ray diffraction patterns of residual starch following amylase and acid hydrolysis.  相似文献   

8.
Black-eyed pea starch was hydrolyzed using concentrated HCl (36% by weight) at different levels (10–60 mL) in the presence of methanol and the physico-chemical properties of native and acidified methanol modified black-eyed pea starches were compared. Results revealed high recovery (>93%) of acid-alcohol treated black-eyed pea starch upon modification. A drop in swelling power and increase in solubility was also observed during acidified methanol treatment. Acid hydrolysis increased paste clarity and the freeze–thaw stability; however, the trend was found to vary at a specific modification level. Acid thinning of starch revealed significant decrease in gel consistency, sediment volume, water, and oil binding capacity. Disruption of interactions between amylose chains resulted in increased amylose leaching on modification. The X-ray diffraction pattern of black-eyed pea starch was of C-type obtained and with increase in acid concentration the intensity of peak was found to be increased. Increased acid concentration showed significant increase in crystallinity; however, marked loss of crystallinity was observed at an acid level of 40 mL which further increased on acid concentrations of 50 and 60 mL. Also, acid concentration showed significantly improved post-reaction color difference (?E) of the modified starches.  相似文献   

9.
The structures and physicochemical properties of acid‐thinned corn, potato, and rice starches were investigated. Corn, potato, and rice starches were hydrolyzed with 0.14 N hydrochloric acid at 50 °C until reaching a target pasting peak of 200—300 Brabender Units (BU) at 10% solids in the Brabender Visco Amylograph. After acid modification the amylose content decreased slightly and all starches retained their native crystallinity pattern. Acid primarily attacked the amorphous regions within the starch granule and both amylose and amylopectin were hydrolyzed simultaneously by acid. Acid modification decreased the longer chain fraction and increased the shorter chain fraction of corn and rice starches but increased the longer chain fraction and decreased the shorter chain fraction of potato starch, as measured by high‐performance size‐exclusion chromatography. Acid‐thinned potato starches produced much firmer gels than did acid‐thinned corn and rice starches, possibly due to potato starch's relatively higher percentage of long branch chains (degree of polymerization 13—24) in amylopectin. The short‐term development of gel structure by acid‐thinned starches was dependent on amylose content, whereas the long‐term gel strength appeared dependend on the long branch chains in amylopectin.  相似文献   

10.
Comparative studies on acid hydrolysis of B-type Fritillaria starch and C-type Rhizoma Dioscorea and Radix Puerariae starches were carried out using a scanning electron microscope (SEM) and X-ray diffraction (XRD). Fritillaria, Rhizoma Dioscorea and Radix Puerariae starches were hydrolyzed with 2.2 mol/L at 35 °C for 2, 4, 8, 16 and 32 days, respectively. The SEM and XRD results revealed that B-type starch and C-type starch displayed different hydrolysis mechanisms. The acid corrosion started from the exterior surface of B-type starch granules followed by the interior core of starch granules. However, the hydrogen ion primarily attacked the interior of the C-type starch granules and then the exterior of starch granules. B-type starch granule started to crack at the hydrolysis period of 4 days while C-type starch granule was not cracked until the hydrolysis progressed up to 16 days. The crystalline type of B-type starch was not changed with increasing hydrolysis time. However, the crystalline type was gradually changed from C-type to A-type for the Rhizoma Dioscorea and Radix Puerariae starches with increase in the hydrolysis time. This result showed that the B-type polymorphs present in the C-type starch granule was preferentially hydrolyzed during the first stage of hydrolysis.  相似文献   

11.
Starches were isolated from the pulp of seven varieties of mature Western Samoan breadfruit using a traditional method. Proximate analysis, starch damage and amylose contents were measured. Isolated starches were further examined by image analyser to determine particle size distribution and by X-ray diffraction. Gelatinisation was studied by Visco-Amylograph, and by swelling power and solubilisation during heating in water. The starches were as low in non-starch materials except protein (0.37- 1.08%) as commercial starches from most other sources. Breadfruit starch showed the B-type X-ray diffraction pattern common in tuberous starches and resembled potato starch in its gelatinisation behaviour. Variations in particle size, gelatinisation behaviour, starch damage and amylose level existed between starches from the different varieties and would influence selection as a starch for specific purposes.  相似文献   

12.
为了解月桂酸对小麦淀粉黏滞性和质构特性的影响,利用X-射线衍射仪、快速黏度分析仪和质构仪测定月桂酸和3种不同直链淀粉含量小麦淀粉混合体系的晶体结构、黏滞性和质构特性。结果表明:复合指数随月桂酸用量和直链淀粉含量的增加而增大;小麦淀粉的晶体结构为A-型,淀粉和月桂酸复合后出现V-型结构吸收峰,结晶度随复合指数增大而增大;月桂酸显著影响小麦淀粉的黏滞性和质构特性,使小麦淀粉的最终黏度增大,热糊黏度、硬度和咀嚼性减小。1.5%的月桂酸与小麦淀粉复合程度最大,对淀粉黏滞性和质构特性的影响最大。  相似文献   

13.
Acid modified, agglomerated starches offer specific advantages as fillers in production of pharmaceutical tablets. Spray drying can improve processing of tablet mixtures significantly. In order to investigate prerequisites in utilization of rice starch, non‐waxy and waxy types were partially hydrolyzed in 6% (w/v) HCl solution at room temperature for varied length of time to obtain rice starches with increased crystallinity (so‐called crystalline rice starches). Scanning electron micrographs of native and highly crystalline starches were used to study the morphological changes and to suggest the mode of acid attack during hydrolysis. Exo‐corrosion distributed over the surface of acid‐modified waxy rice starch (AWRS) was observed after 192 h of hydrolysis. In contrast, the surface of acid‐modified rice starch (ARS) remained unchanged at 192 h of acid hydrolysis. The amylose content and the median particle size (diameter) were reduced with increasing hydrolysis time. It was found by X‐ray diffraction that the relative crystallinity of acid‐modified starches at >95% relative humidity was clearly increased with prolonged hydrolysis time. For studying tablet properties spherical agglomerates of the native and acid modified starches were directly compressed at 4 kN to obtain tablets. Crushing strength and disintegration time of tablets increased with relative crystallinity. In contrast, tablet friability was reduced. Concerning tablet functionality, the crystalline starches were positioned in overlapping ranges between the common commercial tablet fillers (microcrystalline cellulose, pregelatinized starch and lactose, respectively).  相似文献   

14.
The comprehension of the structure of starch granules is important for the understanding of its physicochemical properties. Native and sour cassava starches after being analyzed with respect to their pasting properties and baking expansion capacity, were treated with 2.2 N HCl at 38 °C for a maximum of nine days. The starch granules remaining after lintnerization were analyzed for amylose content and intrinsic viscosity, by X‐ray diffraction, scanning electron microscopy and chromatographic analysis. The results indicated that the acid hydrolysis on all starches occurred in two steps. The first one, with high hydrolysis rate, was characterized by a quick degradation of the amorphous part of the granules whereas the second step, with lower hydrolysis rate, was characterized by a higher resistance of the organized areas of the granules to acid treatment. Most of the amylose chains were found in the amorphous areas of starch granules only a small percentage was involved in the crystalline regions. The microscopic and chromatographic analysis demonstrated that the acid hydrolysis was not able to disrupt the entire granular crystalline structure. Fermented starch showed amylose and/or amylopectin chain fractions resistant to pullulanase, probably due to structural alterations during fermentation.  相似文献   

15.
Mango and banana starches were isolated from unripe fruits and their morphology; thermal and pasting properties; molar mass and chain length distribution were determined. Mango starch granules were spherical or dome‐shaped and split, while banana starch had elongated granules with a lenticular shape. Amylopectin of both fruit starches had a lower molar mass than maize starch amylopectin; however, mango amylopectin had the highest gyration radius. Banana amylopectin showed the lowest percentage of short chains [degree of polymerization (DP) 6–12] and the highest level of long chains (DP ≥ 37); mango amylopectin presented the highest fraction of short chains, but the level of longest chains was intermediate between those of banana and maize amylopectins. Banana starch presented the highest average gelatinization temperature followed by mango starch and maize starch had the lowest value; a similar pattern was found for the gelatinization enthalpy. The two fruit starches had a lower pasting temperature than maize starch, but the former samples showed higher peak and final viscosities than maize starch. Structural differences identified in the fruit starches explain their physicochemical characteristics such as thermal and pasting behavior.  相似文献   

16.
Corn starches with and without guar gum [10% (w/w)] and 2% (w/w) of diacetyl tartaric acid ester of monoglyceride, sodium stearoyl‐2‐lactylate or citric acid, respectively, were extrusion‐cooked in a twin‐screw extruder at 18% moisture, 150 °C and 180 rpm screw speed. The content of resistant starch was determined by sequential enzymatic digestion. The formation of resistant starch in extruded corn starch was strongly affected by the addition of gum and the different food additives. X‐ray diffraction of the extruded starches gave a V diffraction pattern indicating the effect of extrusion cooking and amylose‐lipid complexes. Enzymatic digestion did not affect the V‐structure, which could apparently be attributed to extrusion cooking. Similarly, differential scanning calorimetric thermograms indicated that all isolated resistant starches exhibited endothermic transitions between 71—178 °C signifying a complex formation between amylose and the emulsifiers and possibly the melting of amylose crystallites in the resistant starch. Purification of the isolated resistant starches by size exclusion‐high performance liquid chromatography showed a dependence of molecular weight on the added additives. Results of differential scanning calorimetry and X‐ray diffraction suggest that amylose‐lipid complexes could also be involved in the formation of resistant starch in extruded cornstarch.  相似文献   

17.
不同物理方法处理对碎米中淀粉特性的影响   总被引:1,自引:0,他引:1  
吴琼  柳溪 《中国酿造》2016,35(1):105
采用挤压、微波、超声波三种物理方法对水分含量18%的碎米淀粉进行处理,研究分析碎米淀粉经物理方法处理前后的理化性质和结构变化。结果表明,碎米淀粉经微波和超声处理后酶解力增加,糊化黏度下降,而溶解度、膨胀力、糊化温度和直链淀粉含量变化不显著;两种淀粉颗粒表面棱角减少,淀粉颗粒晶型基本没有发生变化,淀粉结晶区降低。挤压后的碎米淀粉变化较大,颗粒形状为片状,凝沉性强,1.0 h后体积仅为3 mL,糊化温度明显降低至55.0 ℃,直链淀粉含量增长为30.75%,溶解度强,为0.59%,酶解力达到45%,X-射线主要衍射峰的强度降低。  相似文献   

18.
Structures and functional properties of starch from high‐protein, lipoxygenase‐free and low‐linolenic acid soybean variety seeds collected 20 d prior to harvest were investigated. Soybean starches exhibit CB‐type X‐ray diffraction patterns, and granule diameters were very small (0.7 to 4 µm). Soybeans, 20 d prior to harvest contained 10.9–11.7% starch (dry basis). Apparent amylose content was 19–22% and absolute amylose content was 11.8–16.2%. Amylopectin weight‐average molar mass ranged from 5.1 to 11.3×108 g/mol. Amylopectin average branch chain‐length, determined by anion‐exchange chromatography with an amyloglucosidase post‐column and pulsed amperometric detector, was very short relative to other starches (20.4–20.9). Onset gelatinization temperature ranged from 52–54°C, and ΔH was 12–13 J/g. Paste viscosity was low relative to other starches, especially peak (81–93 RVU) and final (93–106 RVU) viscosity. The apparent amylose content of the low‐linolenic acid soybean starch was significantly higher than that of high‐protein soybean starch, and absolute amylose content of low‐linolenic acid soybean starch was significantly higher than that of lipoxygenase‐free soybean starch. Based on our results, investigations on whether soybeans with different fatty acid oil composition have different starch structures would be worthwhile. Field replicates for each soybean variety exhibited high variation in starch characteristics, with further differences in starch structures and functional properties likely to be determined once variation is minimized.  相似文献   

19.
This research aimed to study physicochemical properties and in vitro digestibility of flours and starches from taro cultivated in different regions of Thailand, that is, Kanchanaburi (KB), Chiang Mai (CM), Phetchaburi (PB) and Saraburi (SB). Taro starches were extracted from taro flours using either water or alkaline extraction. The taro flours had significantly (P ≤ 0.05) larger particle size, higher pasting and gelatinisation temperatures, and resistant starch content but lower total starch content, whiteness (L* value), paste viscosities and clarity than their corresponding extracted starches. All the taro starches exhibited polygonal and irregular granules and gave A-type X-ray diffraction pattern. The alkaline-extracted taro starches had significantly (P ≤ 0.05) higher extraction yield, total starch content, L* value, pasting and gelatinisation temperatures, and paste clarity but lower granular size, amylose content, resistant starch content, paste viscosities and relative crystallinity than their water-extracted counterparts.  相似文献   

20.
Waxy (WX), regular (RA), and high‐amylose (HA) maize and hulless barley (HB) starches were subjected to partial acid hydrolysis with 1.0 and 2.2 N HCl for 30–240 min. In both starches, the extent of hydrolysis with 1.0 N HCl followed the order: HA>WX>RA, whereas with 2.2 N HCl, the order was: HA>WX>RA (maize) and WX>HA>RA (HB), respectively. The relative crystallinity increased (HA>WX>RA) and the X‐ray pattern remained unchanged, whereas the swelling factor decreased (WX>RA>HA in maize and WX>HA>RA in HB) at both acid concentrations. Starches hydrolyzed with 1.0 N HCl exhibited increased gelatinization temperatures (WX>RA>HA in maize, WX>HA ∼ RA in HB), a narrower gelatinization temperature range (WX>RA>HA in maize, WX>RA ∼ HA in HB) and a decreased gelatinization enthalpy (WX>HA>RA in maize and HB). Acid hydrolysis increased the accessibility of the phosphorylating reagent into the amorphous regions. The extent of phosphorylation was more pronounced (maize>HB) in starches hydrolyzed with 1.0 N HCl for 60–90 min. The bound phosphorus content (BPC) followed the order: HA>WX>RA in maize and HB starches hydrolyzed with 1.0 N HCl for 240 min. In both starches, the extent of cationization was not influenced either by acid concentration or hydrolysis time. In general, acid hydrolysis significantly affected the reactivity of starch towards phosphorylation, where the optimum hydrolysis condition differed with starch source. The results would benefit the starch industry, since the amount of the phosphorylating reagent required for increasing thermal stability and/or freeze‐thaw stability could be decreased substantially, if starches are subjected to partial acid hydrolysis prior to derivatization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号