首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ultrasonic flow meter for small pipes is presented. For metal pipe diameter smaller than 10 mm, clamp-on ultrasonic contrapropagation flow meters may encounter difficulties if cross talk or the short acoustic path contributes to large uncertainty in transit time measurement. Axial inline flow meters can avoid these problems, but they may introduce other problems if the transducer port is not properly positioned. Three types of pipe connecting tees are compared using the computational fluid dynamics (CFD) method. CFD shows the 45° tee has more uniform velocity distribution over the measuring section. A prototype flow meter using the 45° tee was designed and tested. The zero flow experiment shows the flow meter has a maximum of 0.002 m∕s shift over 24 h. The flow meter is calibrated by only 1 meter factor. After calibration, inaccuracy lower than 0.1% of reading was achieved in the laboratory, for a measuring range from 15 to 150 g∕s (0.29 to 2.99 m∕s; Re = 2688 to 26,876).  相似文献   

2.
为了减弱风场在超声波换能器测风阵列中产生湍流,降低湍流对信号采集精度的影响,分析了换能器阵列影响流场的因素,采用6个收发一体的超声波换能器,设置独立的3条测风路径,根据不同来流方向,建立了风速计算模型,结合换能器晶片的工作特性,改进测风阵列的设计,降低了阴影效应的影响。利用FLUENT软件,通过设置不同的雷诺数、来流风速和风向参数,仿真了流场在阵列中分布特性,得到阵列速度云图和测风路径速度变化图,验证了改进后的测风阵列性能有效提升,说明了所设计阵列能满足测风精度提高的要求。  相似文献   

3.
介绍了一种基于互相关理论的时差法超声波流量测量算法.系统采用时差法声道布置,采集流体静止和有流速状态下的两组回波信号,通过计算相关函数的峰值得到两回波信号时间差,间接得出流量,提高了时差法渡越时间获取的精度.极性相关算法的引入,大大提高了系统运算速度,提高了实时性.采用伪随机信号作为超声激励信号,克服了算法测量范围小的缺陷,更可提高系统精度.实验表明该系统测量精度高,实时性好.  相似文献   

4.
In this work, a high speed ultrasonic multitransducer pulse-echo system using a four transducer method was used for the dynamic characterization of gas-liquid two-phase separated flow regimes. The ultrasonic system consists of an ultrasonic pulse signal generator, multiplexer, 10 MHz (0.64 cm) ultrasonic transducers, and a data acquisition system. Four transducers are mounted on a horizontal 2.1 cm inner diameter circular pipe. The system uses a pulse-echo method sampled every 0.5 ms for a 1 s duration. A peak detection algorithm (the C-scan mode) is developed to extract the location of the gas-liquid interface after signal processing. Using the measured instantaneous location of the gas/liquid interface, two-phase flow interfacial parameters in separated flow regimes are determined such as liquid level and void fraction for stratified wavy and annular flow. The shape of the gas-liquid interface and, hence, the instantaneous and cross-sectional averaged void fraction is also determined. The results show that the high speed ultrasonic pulse-echo system provides accurate results for the determination of the liquid level within +/-1.5%, and the time averaged liquid level measurements performed in the present work agree within +/-10% with the theoretical models. The results also show that the time averaged void fraction measurements for a stratified smooth flow, stratified wavy flow, and annular flow qualitatively agree with the theoretical predictions.  相似文献   

5.
At hydraulic power stations, Pitot tubes have commonly been used to measure flow rates in steel penstocks for performance testing of hydraulic turbines. Due to the difficulties of Pitot tube installation, transit-time ultrasonic flow meters are becoming a popular replacement, but their accuracy is sensitive to velocity profiles that depend on Reynolds numbers and pipe surface roughness. Ultrasonic pulse Doppler flow meters have recently gained favor as suitable tools to measure flow rates in steel penstocks because they can measure instantaneous velocity profiles directly. Field tests were conducted at an actual hydraulic power plant using an ultrasonic pulse Doppler flow meter, and it was found capable of measuring velocity profiles in a large steel penstock with a diameter of over one meter and Reynolds number of more than five million. Furthermore, two ultrasonic transducers were placed on the pipe surface to validate the multi-line measurement of asymmetric flow. Each transducer recorded the velocity profile simultaneously from the pipe centerline to its far wall during plant operation. Velocity profiles were obtained from three-minute measurements to improve the accuracy of flow rate measurements.  相似文献   

6.
基于弹性体振动理论,建立了振弦应变传感器输出频率与应变的数学模型表达式,提出该类传感器的校准方法,设计了校准装置.该装置利用计算机自动采集数据,并与电子表格结合,实现对振弦应变传感器进行可靠校准.  相似文献   

7.
In order to improve the measurement performance of dry calibration on ultrasonic flowmeter, the Computational Fluid Dynamic (CFD) modeling approach of the effect on transducer protrusion and recess are mainly discussed in the paper while its effects on ultrasonic flowmeter accuracy are also presented. Through comparing simulation results to experimental data, the CFD modeling is firstly determined. Then, detail analysis on flow field for two typical transducer installations are obtained based on the CFD method. Besides, the mechanism of both flow effects on measurement accuracy are explained and compared respectively, which indicates that negative velocities generated at protrusion and recess locations are the indispensable factors for negative measurement errors. Finally, comparison results show that smaller measurement error can be achieved with protruding transducers, which is a better arrangement type of transducer for ultrasonic flowmeters.  相似文献   

8.
Speed of sound augmented Coriolis technology utilizes a process fluid sound speed measurement to improve the accuracy of Coriolis meters operating on bubbly liquids. This paper presents a theoretical development and experimental validation of speed of sound augmented Coriolis meters. The approach utilizes a process fluid sound speed measurement, based on a beam-forming interpretation of a pair of acoustic pressure transducers installed on either side of a Coriolis meter, to quantify, and mitigate, errors in the mass flow, density, and volumetric flow reported by two modern, dual bent-tube Coriolis meters operating on bubbly mixtures of air and water with gas void fractions ranging from 0% to 5%. By improving accuracy of Coriolis meters operating on bubbly liquids, speed of sound augmented Coriolis meters offer the potential to improve the utility of Coriolis meters on many existing applications and expand the application space of Coriolis meters to address additional multiphase measurement challenges.The sources of measurement errors in Coriolis meters operating on bubbly liquids have been well-characterized in the literature. In general, conventional Coriolis meters interpret the mass flow and density of the process fluid using calibrations developed for single-phase process fluids which are essentially incompressible and homogeneous. While these calibrations typically provide sufficient accuracy for single-phase flow applications, their use on bubbly liquids often results in significant errors in both the reported mass flow, density and volumetric flow. Utilizing a process fluid sound speed measurement and an empirically-informed aeroelastic model of bubbly flows in Coriolis meters, the methodology developed herein compensates the output of conventional Coriolis meters for the effects of entrained gas to provide accurate mass flow, density, volumetric flow, and gas void fraction of bubbly liquids.Data presented are limited to air and water mixtures. However, by influencing the effective bubble size through mixture flow velocity, the bubbly liquids tested exhibit decoupling characteristics which spanned theoretical limits from nearly fully-coupled to nearly fully-decoupled flows. Thus, from a non-dimensional parameter perspective, the data presented is representative of a broad range of bubbly liquids likely to be encountered in practice.  相似文献   

9.
针对电磁超声测厚换能器保护提离距过大导致回波信号微弱且信噪比低,难以在时域内直接准确提取渡越时间得到精 确厚度值的问题,提出频域内粒子群(PSO)优化变分模态分解(VMD)参数的 O-VMD 渡越时间提取方法。 分别对分解层数和 惩罚因子选取固定参数,及基于峭度与功率谱熵联合适应度函数的 PSO 算法获取 VMD 遍历优化参数,进行双次 VMD 处理,滤 除高频及低频噪声;选取能量最大模态进行信号重构,并应用希尔伯特变换获取回波信号时差。 在不同提离条件下,对不同厚 度铝板检测数据采用 O-VMD、经验模态分解(EMD)等方法进行信号对比处理,结果表明,提离距在 0 ~ 2. 1 mm,O-VMD 方法最 大误差为 0. 67% ,且误差与提离距成正比,为精确获取高提离距测厚数据提供依据。  相似文献   

10.
针对非稳态流场中流体测量时存在的问题,在超声波流量计过零点检测判定渡越时间的基础上,采用电压调幅的方法产生超声波换能器激励信号,然后通过检测接收信号的幅值变化特征点定位波形。针对流场中流速不稳定可能导致的波形不稳定情况,采用中值滤波的方法减小误差。为避免ADC芯片位数和AD转换速率限制导致渡越时间测量误差问题,在数字波形特征点判定基础上,采用过零点检测从模拟波形上获得渡越数据。实验结果表明,该方法具有一定的可行性,可以达到对超声波脉冲序列准确处理、定位的目的,测量误差可以控制在在1.5%以内,可以达到二级精度仪表的要求水平。  相似文献   

11.
利用压阻式水声传感器采集超声回波信号,通过行共用电源线,列共用信号线的方式将水声传感器组成成像阵列.使用MAX4617八选一高速模拟开关控制每个传感器与采集电路的通断,从而实现采集电路的分时复用功能.利用AD6655采集数据,FPGA作为模拟开关和采集电路的时序控制器,异步FIFO作为采集数据传送给EZ-USB的缓冲器,EZ-USB单片机负责任务的协调,并把数据打包上传给计算机.初步测试了传感器与采集通道的开关时延特性,以及分时采集样本与原始声信号吻合程度,实验结果证明系统能够完成水声传感阵列的实时数据采集任务.  相似文献   

12.
An ultrasonic tomographic velocimeter to provide quantitative images of axial flow fields in pipes is developed and presented in this work. To detect the flow in various directions and positions, a novel transducer configuration strategy is proposed. All-in-one transducers are mounted in two sectional planes of the pipe. In each plane, N transducers are equally spaced along the circumference. Overlapped propagation paths are introduced by the configuration strategy, and the influence of the vortex flow can be eliminated theoretically by averaging the line velocities of the overlapped paths. To achieve a fast detection speed, the projection data is collected via an electrical scan in a fan-beam mode. After rearrangement and interpolation of the projection data, the parallel beam filtered back projection (FBP) algorithm is implemented to reconstruct the axial flow field. Numerical simulations with the theoretical velocity profiles were performed. The compensation method for the vortex flow is proved to be effective and necessary, and the number of transducers required for reconstruction of common flow profiles was estimated. Accordingly, an ultrasonic tomographic velocimeter consisting of 2×12 transducers was fabricated. Experiments were conducted in the straight pipe and downstream of a single bend pipe and compared with the computational fluid dynamics (CFD) simulation results. As demonstrated, the ultrasonic tomographic velocimeter was capable of visualizing both symmetric and asymmetric axial flow fields with high reliability.  相似文献   

13.
Several kinds of commercial flowmeters, namely, Coriolis flowmeters, turbine meters, ultrasonic flowmeters, and positive displacement flowmeters, have been calibrated using the primary standard for hydrocarbon flow measurement in Japan (which is based on static and gravimetric methods with a flying start and finish) and a small volume prover (SVP) at the same calibration condition in order to investigate the performance of the SVP. The differences in calibration results for the mechanical flowmeters between the primary standard and the SVP apparently depend on the flow rate, although the results show agreement within 0.04%. The computer-based flowmeters, which have a time delay in the output pulse signal, indicated larger differences due to the effect of the sudden flow rate change caused by the proving action of the SVP at larger flow damping times.  相似文献   

14.
介绍振弦式传感器的数学模型及工作原理,给出了该传感器信号采集卡的设计方案。分析了激振与拾振电路的设计,传感器信号频率的等精度测量电路设计,以及采用CAN总线实现与主控卡相互通信的智能节点设计。该采集卡作为一个嵌入式智能单元,可实现根据不同应用需要与其他传感器采集卡自由组合,构成一个灵活的集成数据采集系统硬件平台。  相似文献   

15.
根据超声波回波信号是一个变幅周期性信号这一特点,提出一种用数字细分来精密测量超声波传输时间的方法,阐明了超声波换能器驱动电路原理及利用FPGA电路和高分辨率A/D电路通过高频采样来实现这一方法的原理,并采用该方法和电路设计了超声波流量计。指出超声波传输时间测量的分辨率取决于超声波信号的频率和A/D电路的分辨率,为保证测量精度,应尽可能采用较高的采样频率。超声波传输时间的测量综合了全部回波信号采样数据,有很好的可靠性和很强的抗干扰能力。  相似文献   

16.
A theoretical flow model has been developed to describe accurately a fully developed velocity profile of a gas flow in pipe lines with wall roughness as parameter. The model applies the Colebrook and White skin friction correlation which has been adjusted based on experimental data from Princeton SuperPipe facilities. This has resulted in a flow profile model in line with the latest views. The model has shown a significant flow profile variation for wall roughness changes. An ultrasonic ray propagation model of a single path meter has been developed to study the influence of the mentioned flow profile variations on ultrasonic meters. The model has been applied for various cases with different Reynolds number and wall roughness. The results of the study confirm field data that ultrasonic meters are affected by wall roughness changes. To quantify the effect for multipath ultrasonic meters the flow meter algorithm and path position is required.  相似文献   

17.
For the purpose of understanding and improving the stress wave factor technique and the travelling wave control method, the sensing characteristics of contact-type transducers for flexural waves are investigated in this paper. Two kinds of frequency response functions (FRF) are presented to characterize the transducer sensing results: one is for any harmonic plane wave, and the other for any point source disturbance. The two FRF are both expressed in the form of explicit physical interpretations which distinguish the influences from the transducer itself and from the tested structure. Based on this, three characteristic lines about the FRF are presented: one is a scattering line which means the FRF is dominated by the nature of wave scattering or wave reflection, the other two are transducer’s mass and spring lines which imply the transducers properties dominate the FRF. Using these three lines, the difference between general ultrasonic transducers and general vibration transducers can be clearly identified. Finally using the fast Fourier transform (FFT) technique, some typical time domain numerical results of the transducer output are also presented to show some important sensing characteristics.  相似文献   

18.
Coriolis metering technology is widely applied throughout industry. In addition to the mass flow rate, a Coriolis meter can measure fluid density based on the resonant frequency of the flow tube vibration. There is currently increasing interest in utilising this density measurement capability as the primary process value in applications such as precision control for fluid property conditioning, and fluid contamination monitoring.However, within these applications, ambient temperature variation can be significant.This paper details research data obtained using NEL's ‘Very Low Flow’ single-phase facility. The rig was modified to include a programmable temperature enclosure in which a Coriolis meter was installed. Two commercial meter models from the same manufacturer were tested. Both meters showed fluid density errors when subjected to fluctuations in the surrounding ambient air temperature. The fluid properties of the test medium were confirmed to be stable using NEL's UKAS standard reference instrumentation.Previous temperature effects research for Coriolis meters have focussed on the process fluid temperature and there is little published data on the effects of ambient temperature.  相似文献   

19.
高精度超声风速测量系统设计与实现   总被引:1,自引:0,他引:1  
时差法是超声风速风向测量系统的基本方法.文中首先对影响时差法测量精度的因素进行分析,针对这些影响因素,在超声换能器设计、阵型设计、电路系统设计和信号处理算法等方面提出了提高系统精度的设计方案,并制成样机.实验测试表明,文中所实现的系统已经基本达到国际尖端产品的测量精度,且具有体积小、可靠性高等优点,具有很高的实际应用价值.  相似文献   

20.
Ultrasonic water meters offer a number of advantages such as non-intrusiveness, low pressure loss, high accuracy, low power consumption and long service life, which make them a viable option for the next generation of smart water meters. However, the existing ultrasonic water meters have difficulties in balancing the range and accuracy. Therefore, in order to address this issue, this study proposes a novel ultrasonic water meter featured with high-precision and wide-range. First of all, the flow measurement principle of the ultrasonic time difference method is investigated, and a flow measurement model that includes the parameter of radial transit time (TD) is developed. The ultrasonic water meter is designed based on comprehensive consideration of the three aspects of hardware, software and algorithms, and a series of experiments are conducted to verify the performance of the water meter. Eighteen verification test points with the flow range of 0.015–4.509 m3/h are carried out, the results of which suggest that the accuracy level of the ultrasonic water meter reaches 0.5, with the repeatability of 0.09%, and the range ratio of 300:1, indicating the achievement of the design goal of high-precision and wide-range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号