首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The glass structure, wetting behavior and crystallization of BaO–Al2O3–B2O3–SiO2 system glass containing 2–10 mol% Al2O3 were investigated. The introduction of Al2O3 caused the conversion of [BO3] units and [BO4] units to each other and it played as glass network former when the content was up to 10 mol%, accompanied by [BO4]  [BO3]. The stability of the glass improved first and then decreased as Al2O3 increased from 2 to 10 mol%, the glass with 5 mol% Al2O3 being the most stable one. The wetting behavior of the glasses indicates that excess Al2O3 leads to high sealing temperature. The glass containing 5 mol% Al2O3 characterized by a lower sealing temperature is suitable for SOFC sealing. Al2O3 improves the crystallization temperature of the glass. The crystal phases in the reheated glasses are mainly composed of Ba2Si3O8, BaSiO3, BaB2O4 and BaAl2Si2O8. Al2O3 helps the crystallization of BaSiO3 and BaAl2Si2O8.  相似文献   

2.
The phase transition of LaAlO3 in heavy metal oxide lead-tellurite glass was obtained and verified, along with its influence on glass structure, magnetic, and Faraday rotation properties were characterized through various techniques such as nuclear magnetic resonance (NMR), X-ray neutron diffraction, transmission electron microscopy, X-ray photoelectron microscopy, vibrating-sample magnetometer, and electron paramagnetic resonance (EPR). Cubic LaAlO3 nanocrystals were synthesized by one-pot hydrothermal technique and doped at 1, 5, 10, and 15 mol% into glasses, respectively. The LaAlO3 nanocrystals in as-casted glasses were characterized to be around 17 nm in cubic phase belonging to the Pm3m space group. After crystallization treatment at 360 °C for 2 h, cubic LaAlO3 phases were changed to 14–27 nm-rhombohedral phases due to the temperature-induced viscosity and strain in the melt. The phase transition yielded great modification to the glass structure through converting TeO4→TeO3, AlO6→AlO4, BO4→BO3, and producing non-bridging oxygen. The LaAlO3 doping enhanced the diamagnetism of as-casted glasses, but after phase transition, the weak diamagnetic nature was changed to strong ferromagnetism and the magnetization significantly increased with the LaAlO3 doping amount (Ms =55 emu/g). The mechanism behind magnetic property enhancement was discussed through 27Al NMR and EPR of glasses. The Verdet constant of glass with 10% LaAlO3 was greatly improved to 175 rad/ T.m at 633 nm which is much higher than the documented values in the literature.  相似文献   

3.
In planar Solid Oxide Fuel Cells (SOFCs), the boron species volatilize from glass seals, and react with lanthanum-containing cathodes (i.e., La0.6Sr0.4Co0.2Fe0.8O3  δ, LSCF) to form LaBO3 under cathodic polarization, which decomposes the perovskite structure and consequently decreases the electrochemical activity of cathode. In this study, Nb2O5 and Gd2O3 are added to an aluminoborosilicate glass to reduce the boron volatility from glass and the reaction between sealing glass and LSCF cathode. Both Nb2O5 and Gd2O3 doping increases the network connectivity, but Nb2O5 doping enhances the [BO3]  [BO4] transition and reduces the boron volatility from glass seals, thus effectively suppressing the deposition and poisoning of boron contaminants on the LSCF cathode. However, an obvious degradation of the electrocatalytic activity of LSCF occurs in the presence of Gd2O3-doped glass. The relationship between glass structure and glass/cathode interaction has been established to provide useful information for designing stable sealing materials for SOFC applications.  相似文献   

4.
《Ceramics International》2022,48(17):25120-25127
Translucent ceramics comprising monoclinic Ga2O3 and non-cubic Ga2O3–Al2O3 solid solution with a composition of Ga1.5Al0.5O3, GaAlO3 and Ga0.4Al1.6O3 were fabricated through two-step spark plasma sintering by using calcinated commercial mixture oxide ceramic powders. All sintered ceramics were nearly fully densified, with a relative density exceeding 99.2%. The average grain sizes decreased with increasing Al content. Band gap was tuned from 4.08 to 6.37 eV. The highest total transmittance (73.6% at 1100 nm) was measured in Ga0.4Al1.6O3 ceramics with both hexagonal (rhombohedral) and monoclinic crystal structures and a minimum average grain size of 0.288 ± 0.067 μm. Defect related photoluminescence, measured under excitation by a 254 nm UV lamp in the GaAlO3 and Ga0.4Al1.6O3 ceramics, lasted more than 15 s after removal of the UV source. These translucent ceramics from Ga2O3–Al2O3 solid solution provide an alternative form of a potential transparent conducting material.  相似文献   

5.
《Ceramics International》2023,49(7):10652-10662
Transparent glass-ceramics containing eucryptite and nepheline crystalline phases were prepared from alkali (Li, Na) aluminosilicate glasses with various mole substitutions of Al2O3 for SiO2. The relationships between glass network structure and crystallization behavior of Li2O–Na2O–Al2O3–SiO2 (LNAS) glasses were investigated. It was found that the crystallization of the eucryptite and nepheline in LNAS glasses significantly depended on the concentration of Al2O3. LNAS glasses with the addition of Al2O3 from 16 to 18 mol% exhibited increasing Q4 (mAl) structural units confirmed by NMR and Raman spectroscopy, which promoted the formation of eucryptite and nepheline crystalline phases. With the Al2O3 content increasing to 19–20 mol%, the formation of highly disordered (Li, Na)3PO4 phase which can serve as nucleation sites was inhibited and the crystallization mechanism of glass became surface crystallization. Glass-ceramics containing 18 mol% Al2O3 showed high transparency ~84% at 550 nm. Moreover, the microhardness, elastic modulus and fracture toughness are 8.56 GPa, 95.7 GPa and 0.78 MPa m1/2 respectively. The transparent glass-ceramics with good mechanical properties show high potential in the applications of protective cover of displays.  相似文献   

6.
《Ceramics International》2020,46(15):23347-23356
This work was carried out to specify the effect of Gd2O3 on the gamma and neutron radiation shielding capacities of tellurite rich glasses with 75TeO2+15ZnO+(10-x)Nb2O5+xGd2O3 (TZNG), where (x = 0, 1, 1.5, 2 and 2.5 mol%) nominal composition. The mass attenuation coefficients (μ/ρ) of the studied glasses were acquired with GEANT4 Monte Carlo codes and the results were found to match the theoretical Phy-X values. Next, the variables of Effective atomic number (Zeff), Half Value Layer (HVL) and Mean Free Path (MFP) were calculated employing μ/ρ values. According to the corollaries, the increment of Gd2O3 insertion to the tellurite based glasses was enhanced the μρ and Zeff values for total photon, electron, proton and alpha interactions whereas it was dropped the HVL and MFP values. It is also observed that the total stopping powers of the glasses for electron interaction were declined. The geometric progression (GP) approximation was employed to determine the exposure buildup factor (EBF) for the proposed glasses. The EBFs showed the lowest values for TZNG-E glass with 2.5% mole Gd2O3 addition. Finally, the fast neutron reduction capacity of the TZNG glasses was surveyed by calculating the effective removal cross-sections (ΣR) of the glasses. It is determined that the ΣR values increased with enhancing Gd2O3 content since the addition of Gd2O3 increased the glass density. Consequently, the TZNG-E glass with the highest Gd2O3 additive is the more skillful nominee for gamma-ray and neutron security applications among the investigated glasses.  相似文献   

7.
《Ceramics International》2020,46(14):22079-22089
A series of new transparent and magnetic germanoborate glasses in the system (100-x)[60GeO2–25B2O3–10Na2O–4Al2O3–1PbO] – (x) Gd2O3, with x = 0, 1, 2, 5, 10, 15 and 20 mol%, was prepared and studied with respect to their thermal and structural changes in the presence of Gd2O3. Based on Differential Scanning Calorimetre (DSC) analysis, a glass with 5% of Gd2O3 showed a high thermal stability, which progressively decreases for samples with higher content of Gd2O3. By the analysis of Raman and Fourier Transform Infrared (FTIR) spectra, it was possible to identify that by increasing the amount of Gd2O3, a progressive depolymerization of 6-membered Ge[IV] rings is promoted, concomitant with an increase of Ge[IV] tetrahedra units with non-briding oxygens. The structural analysis through the local-sensitive techniques EXAFS (Extended X-ray Absorption Fine Structure) and XANES (X-ray Absorption Near Edge Structure) showed that the short-range structural modification around the elements Ge and Gd3+ does not change with the addition of Gd2O3 and the presence of germanium four-fold coordination [GeIV] and Gd3+ states, respectively. A simulation of the coordination number (N), the interatomic distance (R) of Ge–O and Gd–O bonds and the Debye-Waller factor was also carried out. The microstructure, after crystallization, of the sample with 15 mol% of Gd2O3 was evaluated using optical and electron microscopes. Finally, the paramagnetic behaviour and ion probe quantification of Gd3+ ions were obtained based on magnetic susceptibility measurements.  相似文献   

8.
In this work, the effect of gradual addition of Al2O3 substituting SiO2 on the structural, thermal, and mechanical properties of SiO2–BaF2–K2O–GdF3–Sb2O3‐based oxyfluoride glasses have been studied. The X‐ray diffraction (XRD) patterns and differential scanning calorimetric (DSC) curves indicate that there is a distinct primary crystallization corresponding to BaGdF5 phase formation in the samples without (0AlG) and with 5 mol% substitution of Al2O3 (5AlG) while the sample with 10 mol% of Al2O3 (10AlG) does not show such crystallization event. Further, the activation energy (Ea) for fluoride crystal formation is higher for the 5AlG in comparison to the 0AlG glass as determined by Kissinger, Augis‐Bennett and Ozawa models. Fourier transform infrared (FTIR) and Raman spectroscopy analysis confirmed the structural modification with the gradual addition of Al2O3 in the glass matrix revealing dominant presence of AlO4 tetrahedral units in 10AlG sample unlike in 5AlG sample which exhibited the manifestation of AlO6 units. Such structural variation has further been substantiated from the estimated elastic properties like Young's modulus (E), shear modulus (G), bulk modulus (K), longitudinal modulus (L), and mean ultrasonic velocity (Um) by showing a decrease for 5AlG sample in comparison with 0AlG sample followed by subsequent increase for 10AlG sample.  相似文献   

9.
10.
One glass formulation (L2 glass) with the composition of La2O3, Al2O3 and B2O3 in a molar ratio of 10:10:80 was selected to cofire with Al2O3 filler. The composites underwent a two-stage crystalline evolution in the temperature range of 800 to 975 °C. The crystallization kinetics of LaBO3 grains and the transformation to LaAl2B3O9 phase were investigated by DTA, XRD, SEM/EDS, and TEM. The results showed that the Al2O3 filler plays an important role as the heterogeneous sites of LaBO3 nuclei, and as reactant for the formation of flaky LaAl2B3O9 crystals. The apparent activation energy of LaBO3-phase formation in L2 glass was 534 kJ/mol and reduced to 466 kJ/mol by the addition of Al2O3. The detail transformation reactions, kinetics, and the crystalline orientation relationship between those phases are reported.  相似文献   

11.
《Ceramics International》2021,47(18):25541-25550
A novel B2O3–Al2O3–SiO2 (BAS) glass filler was first developed to join Al2O3 and zirconia toughened alumina (ZTA) ceramics. The microstructure, crystallization products, and interfacial reaction layer of the joint were all studied. Detailed growth process and the microstructural evolution mechanism of aluminum borate (Al18B4O33 and Al4B2O9) crystal whiskers were revealed through controlling the joining temperature and the holding time. The results showed that the Al18B4O33 and Al4B2O9 whiskers formed at the interfaces and in the joining seam, owing to the reaction between the substrates and the BAS glass system, and the precipitation out of the glass, respectively. Finally, bonded with this BAS glass filler at 1400 °C for one hour, the joints exhibited a maximum shear strength of 42 MPa at room temperature and good mechanical performance after thermal cycling.  相似文献   

12.
Aerodynamic levitation and CO2 laser melting have been used to synthesize the yttrium aluminosilicate glasses zY2O3yAl2O3xSiO2 with z/y = 3/5 corresponding to the YAG (Y3Al5O12) composition and x between ~5 and ~45 mol%. The low‐ and high‐density (LDA inclusion and HDA matrix) polyamorphic phases in glasses with less than ~14 mol% SiO2 were identified with backscattering electron imaging. Polarized and depolarized Raman spectra show the formation of various Qn SiO4 species whose relative populations change smoothly as the SiO2 content is altered. The AlOs (s = 4–6) and YOz (z = 6–9) polyhedra formed in the YAG glass are preserved upon silica additions while the terminal oxygens of the Q2AlO4 tetrahedra are gradually bridged to the Qn‐SiO4 species. The low‐frequency Boson Peak overlaps with the vibrational spectrum and its maximum is redshifted with increasing silica content. Micro‐Raman spectra measured for the LDA and HDA amorphous phases are found to be similar to the spectra of the bulk glass indicating common structural characteristics. The stability of the LDA phase against crystallization appears to be lower than that of the HDA phase. The crystallinity on certain inclusions consisted of YAG microcrystals and a new unidentified microcrystalline phase within Y4Al2(1?x)Si2xO(9+x) solid solution.  相似文献   

13.
Glasses in the 30La2O3-40TiO2-30Nb2O5 system are known to have excellent optical properties such as refractive indices over 2.25 and wide transmittance within the visible to mid-infrared (MIR) region. However, titanoniobate glasses also tend to crystallize easily, significantly limiting their applications in optical glasses due to processing challenges. Therefore, the 30La2O3-40TiO2-(30−x) Nb2O5-xAl2O3 (LTNA) glass system was successfully synthesized using a aerodynamic containerless technique, which improves glass thermal stability and expands the glass-forming region. The effects of Al2O3 on the structure, thermal, and optical properties of base composition glasses were investigated by XRD, DSC, NMR, Raman spectroscopy, and optical measurements. DSC results indicated that as the content of Al2O3 increased, the thermal stability of the glasses and glass-forming ability increased, as the 30La2O3-40TiO2-25Nb2O5-5Al2O3 (Nb-Al-5) glass obtained the highest ΔT value (103.5°C). Structural analysis indicates that the proportion of [AlO4] units increases gradually and participates in the glass network structure to increase connectivity, promoting more oxygen to become bridging oxygen and form [AlO4] tetrahedral linkages to [TiO5] and [NbO6] groups. The refractive index values of amorphous glasses remained above 2.1 upon Al2O3 substitution, and a transmittance exceeding 65% in the visible and mid-infrared range. The crystallization activation energies of 30La2O3-40TiO2-30Nb2O5 (Nb-Al-0) and Nb-Al-5 glasses were calculated to be 611.7 and 561.4 kJ/mol, and the Avrami parameters are 5.28 and 4.96, respectively. These results are useful to design new optical glass with good thermal stability, high refractive index and low wavelength dispersion for optical applications such as lenses, endoscopes, mini size lasers, and optical couplers.  相似文献   

14.
This paper presents microstructural characterization investigations and the crystallization behavior of some glasses in the ternary TeO2–CdF2–WO3 system. Differential thermal analysis (DTA) showed that the glass forming ability of the ternary TeO2–CdF2–WO3 system which is in between the values of 21 and 34, is lower than most of the studied tellurite glasses. It is possible to obtain amorphous glass structure for the compositions of 0.80TeO2–0.10CdF2–0.10WO3 and 0.75TeO2–0.10CdF2–0.15WO3. On the other hand, the 0.85TeO2–0.10CdF2–0.05WO3 and 0.75TeO2–0.15CdF2–0.10WO3 compositions do not form glass with conventional quenching techniques. During crystallization of these glasses, the formation of the alpha, delta and gamma TeO2, WO3 and CdTe2O5 phases were observed with the addition of a new unidentified phase. Three compositions of 0.85TeO2–0.10CdF2–0.05WO3, 0.80TeO2–0.10CdF2–0.10WO3 and 0.75TeO2–0.10CdF2–0.15WO3 demonstrated two exothermic peaks in the DTA curves. SEM/EDS investigations confirmed the existence of the alpha, delta and gamma TeO2, WO3 and CdTe2O5 phases for the annealed glasses. The microstructure of the δ-TeO2 phase was clearly observed in the as-cast 0.75TeO2–0.10CdF2–0.15WO3 composition.  相似文献   

15.
A colorless Ce3+‐activated borosilicate scintillating glass enriched with Gd2O3 is successfully synthesized in air atmosphere for the first time. The full replacement of 10 mol% BaO by Al2O3, and the partial substitution of 3 mol% SiO2 by Si3N4 in the designed glass composition are crucial for this success. The role of Al3+ on tuning the optical properties of Ce3+‐activated borosilicate scintillating glass synthesized in air are analyzed by optical transmittance, X‐ray absorption near edge spectroscopy (XANES) spectra, photoluminescence (PL) and radioluminescence (RL) spectra. The results suggest that the stable Ce4+ ions can be effectively reduced to stable Ce3+ ions by the full replacement of BaO by Al2O3, and both the PL andRL intensity of the designed borosilicate scintillating glass are enhanced by a factor of 6.7 and 5.2, respectively. The integral RL intensity of the synthesized Ce3+‐activated borosilicate scintillating glass is ~17.2%BGO, with a light output of about 1180 ph/MeV. The strategy of substituting BaO by Al2O3 will trigger more scientific and technological considerations in designing novel fast scintillating glasses.  相似文献   

16.
The influence of Al2O3 doping in the range 0.00–0.83 mol% on the microstructure and current–voltage characteristics of ZnO-based varistor ceramics sintered at 1200 °C for 2 h was studied. The threshold voltage VT (V/mm) increased up to a dopant level of about 0.08 mol% Al2O3; the nonlinear coefficient α was significantly increased by additions of up to 0.04 mol% Al2O3, although larger additions of Al2O3 caused it to decrease; and the leakage current increased sharply with increasing amounts of Al2O3. Doping with Al2O3 up to about 0.12 mol% Al2O3 resulted in a significantly decreased ZnO grain size, which is mainly responsible for the significantly increased threshold voltage, VT. No ZnAl2O4 spinel phase was detected in any of the samples, and EDXS and WDXS analyses showed that most of the added Al2O3 distributed between the Zn7Sb2O12 spinel phase and the ZnO phase, while only trace amounts were detected in the Bi2O3-rich phase. The spinel phase incorporates an appropriate amount of Al2O3; however, with an increasing amount of added Al2O3, more of it remains outside the spinel phase in the Bi2O3-rich liquid, where it can incorporate into the growing ZnO grains at the sintering temperature. The amount of Al in the ZnO grains was determined. A mechanism for the grain growth inhibition resulting from the small amounts of Al2O3 in the Bi2O3-rich liquid phase is also proposed.  相似文献   

17.
The sintering behavior of a Pb-free Bi2O3–B2O3–SiO2 glass system was examined as a function of Bi2O3 content. The glass transition temperature and the crystallization temperature of the glasses decreased with different decreasing gradients as the Bi2O3 content increased. The change in temperature affected the sintering behaviors of the glasses. In the case of the 40 mol% Bi2O3 addition, large pore accompanied over-firing phenomenon was observed when the sample was sintered over the optimum sintering temperature. However, over-firing was not observed in the sample with 45 mol% of Bi2O3 because of the crystallized phases during sintering. When the Bi2O3 content was 50–55 mol%, the crystallization temperature became lower than the glass transition temperature, which resulted in the crystallization of glass and it hindered densification.  相似文献   

18.
The effect of Gd2O3-doping on the crystal structure, surface morphology and chemical composition of the Gd2O3–HfO2 system is reported. Gd2O3–HfO2 ceramics with variable composition were prepared by varying the Gd2O3 composition in the range of 0–38 mol% balanced HfO2. X-ray diffraction (XRD) analysis indicates that the Gd2O3 concentration influences the crystal structure of the Gd2O3–HfO2 ceramics. Pure HfO2 and Gd2O3 crystallize in monoclinic and body centered cubic structure, respectively. The Gd2O3–HfO2 ceramics exhibit mixed monoclinic and fluorite structure when the Gd2O3 concentration is varied from 4 to 12 mol%. At 20 mol% of Gd2O3, existence of only the fluorite phase was found. Increasing the Gd2O3 concentration to 38 mol% results in the formation of single-phase pyrochlore Gd2Hf2O7 (a = 5.258 Å).  相似文献   

19.
Using CaO, Y2O3, Al2O3, and SiO2 micron-powders as raw materials, CaO–Y2O3–Al2O3–SiO2 (CYAS) glass was prepared using water cooling method. The coefficient of thermal expansion (CTE) of CYAS glass was found to be 4.3 × 10?6/K, which was similar to that of SiCf/SiC composites. The glass transition temperature of CYAS glass was determined to be 723.1 °C. With the increase of temperature, CYAS glass powder exhibited crystallization and sintering behaviors. Below 1300 °C, yttrium disilicate, mullite and cristobalite crystals gradually precipitated out. However, above 1300 °C, the crystals started diminishing, eventually disappearing after heat treatment at 1400 °C. CYAS glass powder was used to join SiCf/SiC composites. The results showed that the joint gradually densified as brazing temperature increased, while the phase in the interlayer was consistent with that of glass powder heated at the same temperature. The holding time had little effect on phase composition of the joint, while longer holding time was more beneficial to the elimination of residual bubbles in the interlayer and promoted the infiltration of glass solder into SiCf/SiC composites. The joint brazed at 1400 °C/30 min was dense and defect-free with the highest shear strength of about 57.1 MPa.  相似文献   

20.
The effect of additions of up to 1 mol% Al2O3 on abnormal grain growth in BaTiO3 samples sintered at 1200 and 1250 °C has been studied. Samples with and without additions of 0.4 mol% TiO2 were prepared. For the samples without added TiO2, addition of 0.1 mol% Al2O3 increases the number density of abnormal grains, with further additions reducing the number density. The initial increase in number density is caused by Al2O3 forming a solid solution with BaTiO3 and releasing TiO2 to the grain boundaries. This excess TiO2 then reacts with BaTiO3 to form Ba6Ti17O40, which promotes {1 1 1} twin formation and abnormal grain growth. Further additions of Al2O3 react with BaTiO3, Ba6Ti17O40 and excess TiO2 to form Ba4Al2Ti10O27 and BaAl2O4 second phases, neither of which are growth sites for abnormal grains. For the samples with added TiO2, addition of Al2O3 decreases the number of abnormal grains due to the Al2O3 reacting with the excess TiO2 and BaTiO3 to form Ba4Al2Ti10O27 and BaAl2O4 instead of Ba6Ti17O40.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号