首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ti3SiC2 is of interest due to its unique dual nature reminiscent of both brittle ceramics and ductile metals at ambient conditions. In this work, plate-impact experiments have been performed to study the dynamic behavior of Ti3SiC2 under shock compression up to 112 GPa by using laser velocity interferometer and electric pin techniques. Hugoniot elastic limits (HEL), spall strength, and Hugoniot equations of state have been obtained based on measured particle velocity profiles and shock wave velocities. The ratio of spall strength to HEL for Ti3SiC2 is larger than brittle ceramics but smaller than metals. This result indicates that the dual nature of Ti3SiC2 remains at least up to 10 GPa. On the other hand, the linearity of the Hugoniot equation of state, D=6.901(22)+1.153(53)up, suggests that the initial structure of Ti3SiC2 should be stable up to 112 GPa, in contrast to the result reported by Jordan et al. [J. Appl. Phys., 93 (2003) 9639].  相似文献   

3.
4.
5.
6.
7.
8.
9.
Ti3SiC2 samples were irradiated by a 6-MeV Si+ ion to a fluence of 2 × $ \times $ 1016 Si+ ions/cm2 at 300°C followed by annealing at 900°C for 5 h. A transmission electron microscope was used to characterize microstructural evolution. The phase of Ti3SiC2 transformed from the hexagonal close-packed (HCP) to a face-centered cubic structure after irradiation. Hexagonal screw dislocation networks were identified at the deepest position of the irradiated area, which are the products of dislocations reactions. After annealing, the irradiated region has reverted to the original HCP structure. High-density cavities and stacking faults were formed along the basal planes. In addition, ripplocations have been observed in the irradiated region in the Ti3SiC2 sample after annealing. Our insights into the formation processes and corresponding mechanisms of these defect structures might be helpful in the material design of advanced irradiation tolerance materials.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
《Ceramics International》2019,45(11):14229-14237
Single crystalline 6HSiC possesses complex microstructure and its deformation is strongly anisotropic. With the aid of molecular dynamics analysis, this paper investigated the dislocation nucleation and evolution in 6HSiC under nanoindentation on three major planes, i.e., (0001), (011¯0) and (21¯1¯0). It was found that the half loops of prismatic dislocations could form during the nanoindentation on the (0001)plane, while the prismatic dislocation loops emerged on the (011¯0) and (21¯1¯0)planes. Further analysis revealed that the half loops were generated via the interaction of the nucleated dislocations in the basal plane and the first prismatic planes {011¯0}; while the formation of the prismatic loops can be attributed to either the “lasso”-like mechanism or the combination of dislocation interaction and “lasso”-like mechanism. Such strong effect of structural anisotropy was clarified through the generalised stacking fault (GSF) energy surface and stress distribution.  相似文献   

19.
To study protons localization in H1.83K0.17La2Ti3O10·0.17H2O and their motional characteristics, complementary Nuclear Magnetic Resonance (NMR) techniques have been applied. 1H Magic Angle Spinning NMR evidences the presence of different proton containing species. By analyzing the temperature dependence of the 1H MAS NMR spectrum we attribute the observed lines to interlayer H+ in regular sites (isolated and in water rich environment), water protons and protons from various defects. The temperature behaviors of the spectral lines intensities and widths point out that intercalated water molecules are involved in translational motion that is confirmed by spin lattice relaxation rate (R1) and spin-lattice relaxation rate in rotating frame (R1ρ) measurements. It has been shown that for a correct determination of the proton motional parameters the Kohlrausch-Williams-Watts correlation function must be used. Its application results in the following parameters of proton motion in the interlayer space of H1.83K0.17La2Ti3O10·0.17H2O: Ea?=?0.194(2) eV, β?=?0.28(1), τ0=6.2(1)×10?10?s.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号