首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Al2O3–ZrO2 (AZ) xerogel supports prepared by a sol-gel method were calcined at various temperatures. Ni/Al2O3–ZrO2 (Ni/AZ) catalysts were then prepared by an impregnation method for use in hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of calcination temperature of AZ supports on the catalytic performance of Ni/AZ catalysts in the steam reforming of LNG was investigated. Crystalline phase of AZ supports was transformed in the sequence of amorphous γ-Al2O3 and amorphous ZrO2  θ-Al2O3 and tetragonal ZrO2   + α)-Al2O3 and (tetragonal + monoclinic) ZrO2  α-Al2O3 and (tetragonal + monoclinic) ZrO2 with increasing calcination temperature from 700 to 1300 °C. Nickel oxide species were strongly bound to γ-Al2O3 and θ-Al2O3 in the Ni/AZ catalysts through the formation of solid solution. In the steam reforming of LNG, both LNG conversion and hydrogen composition in dry gas showed volcano-shaped curves with respect to calcination temperature of AZ supports. Nickel surface area of Ni/AZ catalysts was well correlated with catalytic performance of the catalysts. Among the catalysts tested, Ni/AZ1000 (nickel catalyst supported on AZ support that had been calcined at 1000 °C) with the highest nickel surface area showed the best catalytic performance. Well-developed and pure tetragonal phase of ZrO2 in the AZ1000 support played an important role in the adsorption of steam and the subsequent spillover of steam from the support to the active nickel.  相似文献   

2.
《Journal of power sources》2006,161(1):531-534
MgAl2O4 was synthesized through hydrolysis of metallic alkoxides of Mg2+ and Al3+. The formed spinel precursor phase was calcined at temperatures between 600 and 1100 °C, for 4 h. The spinel was utilized as a Ni/Pt catalyst support. The Ni/MgAl2O4 catalysts (15% Ni, w/w) containing small amounts of Pt were tested for methane steam reforming. The solids were analyzed by X-ray diffraction (XRD), temperature programmed reduction (TPR) with H2 and catalytic tests. The spinel phase was formed at temperatures above 700 °C. The addition of small amounts of Pt to Ni/MgAl2O4 promoted an increase in surface area. This probably caused the considerable increase in methane conversion.  相似文献   

3.
《Journal of power sources》2002,109(2):347-355
Ni-12 wt.% Al anodes are fabricated for use in molten carbon fuel cells by tape casting and sintering. Sintering is performed in three steps, first at 1200 °C for 10 min in argon, then at 700 °C for 2.5 h in a partial oxidation atmosphere (PH2/PH2O=10−2), and finally at 950 °C for 5 min, 30 min or 1.5 h in hydrogen. Three anodes with different phases or microstructures are produced at different reduction times. One anode contains three phases, namely Ni–Al solid solution, Ni3Al, and Al2O3. The amount of Al2O3 is extremely small at 5 min. A second anode also contains the three phases with the amount of Al2O3 comparable with that of Ni3Al at 30 min. Third anode contains two phases, i.e. Ni–Al solid solution and Al2O3 formed at 1.5 h. The creep strains measured for the three anodes after a 100-h creep test are practically the same with an average value of 0.85%.  相似文献   

4.
《Journal of power sources》2006,158(2):1348-1357
Steam and autothermal reforming reactions of LPG (propane/butane) over high surface area CeO2 (CeO2 (HSA)) synthesized by a surfactant-assisted approach were studied under solid oxide fuel cell (SOFC) operating conditions. The catalyst provides significantly higher reforming reactivity and excellent resistance toward carbon deposition compared to the conventional Ni/Al2O3. These benefits of CeO2 are due to the redox property of this material. During the reforming process, the gas–solid reactions between the hydrocarbons present in the system (i.e. C4H10, C3H8, C2H6, C2H4, and CH4) and the lattice oxygen (OOx) take place on the ceria surface. The reactions of these adsorbed surface hydrocarbons with the lattice oxygen (CnHm + OOx  nCO + m/2(H2) + VO + 2e′) can produce synthesis gas (CO and H2) and also prevent the formation of carbon species from hydrocarbons decomposition reactions (CnHm  nC + 2mH2). Afterwards, the lattice oxygen (OOx) can be regenerated by reaction with the steam present in the system (H2O + VO + 2e′  OOx + H2). It should be noted that VO denotes as an oxygen vacancy with an effective charge 2+.At 900 °C, the main products from steam reforming over CeO2 (HSA) were H2, CO, CO2, and CH4 with a small amount of C2H4. The addition of oxygen in autothermal reforming was found to reduce the degree of carbon deposition and improve product selectivities by completely eliminating C2H4 formation. The major consideration in the autothermal reforming operation is the O2/LPG (O/C molar ratio) ratio, as the presence of a too high oxygen concentration could oxidize the hydrogen and carbon monoxide produced from the steam reforming. A suitable O/C molar ratio for autothermal reforming of CeO2 (HSA) was 0.6.  相似文献   

5.
Present study reports on high catalytic activity of CNTs-supported Ni catalyst (x% Ni-CNTs) synthesized by the homogeneous deposition–precipitation method, which was successfully applied for low-temperature reforming of organic compounds in bio-oil. The optimal Ni-loading content was about 15 wt%. The H2 yield over the 15 wt% Ni-CNTs catalyst reached about 92.5% at 550 °C. The influences of the reforming temperature (T), the molar ratio of steam to carbon fed (S/C) and the current (I) passing through the catalyst, on the reforming process of the bio-oil over the Ni-CNTs' catalysts were investigated using the stream as the carrier gas in the reforming reactor. The features of the Ni-CNTs' catalysts with different loading contents of Ni were investigated via XRD, XPS, TEM, ICP/AES, H2-TPD and the N2 adsorption–desorption isotherms. From these analyses, it was found that the uniform and narrow distribution with smaller Ni particle size as well as higher Ni dispersion was realized for the CNTs-supported Ni catalyst, leading to excellent low-temperature reforming of oxygenated organic compounds in bio-oil.  相似文献   

6.
The CO removal with preferential CO oxidation (PROX) over an industrial 0.5% Ru/Al2O3 catalyst from simulated reformates was examined and evaluated through considering its simultaneously involved oxidation and methanation reactions. It was found that the CO removal was fully due to the preferential oxidation of CO until 383 K. Over this temperature, the simultaneous CO methanation was started to make a contribution, which compensated for the decrease in the removal due to the decreased selectivity of PROX at higher temperatures. This consequently kept the effluent CO content as well as the overall selectivity estimated as the ratio of the removed CO amount over the sum of the consumed O2 and formed CH4 amounts from apparently increasing with raising reaction temperature from 383 to 443 K when the CO2 methanation was yet not fully started. At these temperatures the tested catalyst enabled the initial CO content of up to 1.0 vol.% to be removed to several tens of ppm at an overall selectivity of about 0.4 from simulated reformates containing 70 vol.% H2, 30 vol.% CO2 and with steam of up to 0.45 (volume) of dry gas. Varying space velocity in less than 9000 h−1 did not much change the stated overall selectivity. From the viewpoint of CO removal the article thus concluded that the methanation activity of the tested Ru/Al2O3 greatly extended its working temperatures for PROX, demonstrating actually a feasible way to formulate PROX catalysts that enable broad windows of suitable working temperatures.  相似文献   

7.
《Journal of power sources》2005,145(2):702-706
An integrated microchannel methanol processor was developed by assembling unit reactors, which were fabricated by stacking and bonding microchannel patterned stainless steel plates, including fuel vaporizer, heat exchanger, catalytic combustor and steam reformer. Commercially available Cu/ZnO/Al2O3 catalyst was coated inside the microchannel of the unit reactor for steam reforming. Pt/Al2O3 pellets prepared by ‘incipient wetness’ were filled in the cavity reactor for catalytic combustion. Those unit reactors were integrated to develop the fuel processor and operated at different reaction conditions to optimize the reactor performance, including methanol steam reformer and methanol catalytic combustor. The optimized fuel processor has the dimensions of 60 mm × 40 mm × 30 mm, and produced 450sccm reformed gas containing 73.3% H2, 24.5% CO2 and 2.2% CO at 230–260 °C which can produce power output of 59 Wt.  相似文献   

8.
This paper reports hydrogen production from oxidative steam reforming of 1-propanol and propylene glycol over Ni–M/Y2O3–ZrO2 (10% wt/wt Y2O3; M = Ir, Pt, Ru) bimetallic catalysts promoted with K. The results are compared with those obtained over the corresponding monometallic catalyst. The catalytic performance of the calcined catalysts was analyzed in the temperature range 723–773 K, adjusting the total composition of the reactants to O/C = 4 and S/C = 3.2–3.1 (molar ratios). The bimetallic catalysts showed higher hydrogen selectivity and lower selectivity of byproducts than the monometallic catalyst, especially at 723 K. Ni–Ir performed best in the oxidative steam reforming of both 1-propanol and propylene glycol. The presence of the noble metal favours the reduction of the NiO and the partial reduction of the support. The NiO crystalline phase present in the calcined catalysts was transformed to Ni° during oxidative steam reforming. The adsorption and subsequent reactivity of both 1-propanol and propylene glycol over Ni–Ir and Ni catalysts were followed by FTIR; C–C bond cleavage was found to occur at a lower temperature in propylene glycol than in 1-propanol.  相似文献   

9.
The valorization of cow manure (CM), as bio-waste, under a CO2 atmosphere could be an attractive strategy for tackling the environmental problems related to waste management and CO2 emission and producing valuable syngas. For this purpose, highly loaded Ni–Al2O3 catalysts with alkaline-earth metals (Mg and Sr) were synthesized and applied to the gasification of CM under CO2. The lowest yields of bio-oil (16.98 wt %) and coke (0.34 wt %) and the highest yield of syngas (55.09 wt %) were obtained from the catalytic decomposition of hydrocarbons when Sr was incorporated into Ni/Al2O3 (SN-AO). The highest selectivity for H2 (34.23 vol %) and CO (37.16 vol %) were obtained applying SN-AO followed by Mg-promoted Ni/Al2O3 (MN-AO) and Ni/Al2O3 (N-AO) catalysts. With increasing gasification temperature from 750 °C to 850 °C, the syngas yield (from 55.09 to 70.17 wt %) and H2 concentration (from 34.23 to 38.03 vol %) increased considerably because of the endothermic gasification process. The yield and selectivity of syngas (H2 and CO) increased under CO2 compared to those obtained under N2, indicating the high potential of CO2 for the thermal decomposition and dehydrogenation of the volatile matter.  相似文献   

10.
Supercritical water gasification (SCWG) of wet biomass is a very promising technology for hydrogen energy and the utilization of biomass resources. Ni-based catalysts are effective in catalyzing SCWG of original biomass and organic compounds for hydrogen production. In this paper, hydrogen production by SCWG of glucose over alumina-supported nickel catalysts modified with Cu, Co and Sn was studied. The bimetallic Ni-M (M = Cu, Co and Sn) catalysts were prepared by a co-impregnation method and tested in an autoclave reactor at 673 K with a feedstock concentration of 9.09 wt.%. XRD, XRF, N2 adsorption/desorption, SEM and TGA were adopted to investigate the changes of chemical properties between Ni and Ni-M catalysts and the deactivation mechanism of catalysts. According to the experimental results, the hydrogen yield followed this order: Ni-Cu/γAl2O3 > Ni/γAl2O3 > Ni-Co/γAl2O3 > Ni-Sn/γAl2O3. The results show that Cu could improve the catalytic activity of Ni catalyst in reforming reaction of methane to produce hydrogen in SCWG. In addition, Cu can mitigate the sintering of alumina detected by SEM. Co was found to be an excellent promoter of Ni-based catalyst in relation to hydrogen selectivity.  相似文献   

11.
In this study, methane and methanol steam reforming reactions over commercial Ni/Al2O3, commercial Cu/ZnO/Al2O3 and prepared Ni–Cu/Al2O3 catalysts were investigated. Methane and methanol steam reforming reactions catalysts were characterized using various techniques. The results of characterization showed that Cu particles increase the active particle size of Ni (19.3 nm) in Ni–Cu/Al2O3 catalyst with respect to the commercial Ni/Al2O3 (17.9). On the other hand, Ni improves Cu dispersion in the same catalyst (1.74%) in comparison with commercial Cu/ZnO/Al2O3 (0.21%). A comprehensive comparison between these two fuels is established in terms of reaction conditions, fuel conversion, H2 selectivity, CO2 and CO selectivity. The prepared catalyst showed low selectivity for CO in both fuels and it was more selective to H2, with H2 selectivities of 99% in methane and 89% in methanol reforming reactions. A significant objective is to develop catalysts which can operate at lower temperatures and resist deactivation. Methanol steam reforming is carried out at a much lower temperature than methane steam reforming in prepared and commercial catalyst (275–325 °C). However, methane steam reforming can be carried out at a relatively low temperature on Ni–Cu catalyst (600–650 °C) and at higher temperature in commercial methane reforming catalyst (700–800 °C). Commercial Ni/Al2O3 catalyst resulted in high coke formation (28.3% loss in mass) compared to prepared Ni–Cu/Al2O3 (8.9%) and commercial Cu/ZnO/Al2O3 catalysts (3.5%).  相似文献   

12.
The transesterification of palm oil to methyl esters (biodiesel) was studied using KOH loaded on Al2O3 and NaY zeolite supports as heterogeneous catalysts. Reaction parameters such as reaction time, wt% KOH loading, molar ratio of oil to methanol, and amount of catalyst were optimized for the production of biodiesel. The 25 wt% KOH/Al2O3 and 10 wt% KOH/NaY catalysts are suggested here to be the best formula due to their biodiesel yield of 91.07% at temperatures below 70 °C within 2–3 h at a 1:15 molar ratio of palm oil to methanol and a catalyst amount of 3–6 wt%. The leaching of potassium species in both spent catalysts was observed. The amount of leached potassium species of the KOH/Al2O3 was somewhat higher compared to that of the KOH/NaY catalyst. The prepared catalysts were characterized by using several techniques such as XRD, BET, TPD, and XRF.  相似文献   

13.
《Journal of power sources》2006,163(1):135-143
The surface of LiCoO2 cathodes was coated with various wt.% of Al2O3 derived from methoxyethoxy acetate-alumoxane (MEA-alumoxane) by a mechano-thermal coating procedure, followed by calcination at 723 K in air for 10 h. The structure and morphology of the surface modified LiCoO2 samples have been characterized with XRD, SEM, EDS, TEM, BET, XPS/ESCA and solid-state 27Al magic angle spinning (MAS) NMR techniques. The Al2O3 coating forms a thin layer on the surface of the core material with an average thickness of 20 nm. The corresponding 27Al MAS NMR spectrum basically exhibited the same characteristics as the spectrum for pristine Al2O3 derived from MEA-alumoxane, indicating that the local environment of aluminum atoms was not significantly changed at coating levels below 1 wt.%. This provides direct evidence that Al2O3 was on the surface of the core materials. The LiCoO2 coated with 1 wt.% Al2O3 sustained continuous cycle stability 13 times longer than pristine LiCoO2. A comparison of the electrochemical impedance behavior of the pristine and coated materials revealed that the failure of pristine cathode performance is associated with an increase in the particle–particle resistance upon continuous cycling. Coating improved the cathode performance by suppressing the characteristic structural phase transitions (hexagonal to monoclinic to hexagonal) that occur in pristine LiCoO2 during the charge–discharge processes.  相似文献   

14.
High amounts of acid compounds in bio-oil not only lead to the deleterious properties such as corrosiveness and high acidity, but also set up many obstacles to its wide applications. By hydrotreating the bio-oil under mild conditions, some carboxylic acid compounds could be converted to alcohols which would esterify with the unconverted acids in the bio-oil to produce esters. The properties of the bio-oil could be improved by this method. In the paper, the raw bio-oil was produced by vacuum pyrolysis of pine sawdust. The optimal production conditions were investigated. A series of nickel-based catalysts were prepared. Their catalytic activities were evaluated by upgrading of model compound (glacial acetic acid). Results showed that the reduced Mo–10Ni/γ-Al2O3 catalyst had the highest activity with the acetic acid conversion of 33.2%. Upgrading of the raw bio-oil was investigated over reduced Mo–10Ni/γ-Al2O3 catalyst. After the upgrading process, the pH value of the bio-oil increased from 2.16 to 2.84. The water content increased from 46.2 wt.% to 58.99 wt.%. The H element content in the bio-oil increased from 6.61 wt.% to 6.93 wt.%. The dynamic viscosity decreased a little. The results of GC–MS spectrometry analysis showed that the ester compounds in the upgraded bio-oil increased by 3 times. It is possible to improve the properties of bio-oil by hydrotreating and esterifying carboxyl group compounds in the bio-oil.  相似文献   

15.
Ni, Co and Ni–Co bimetallic catalysts of different ratios were synthesized by the Incipient Wetness Impregnation Method (IWI) over Magnesium Aluminate support, keeping the total metal loading 15 wt.%, characterized and tested for the reforming of methane with carbon dioxide at 873 K and 1 atm pressure. Magnesium Aluminate supported catalysts were also compared with Al2O3 supported Ni catalysts with similar metal loading. The results obtained revealed that MgAl2O4 exhibited excellent thermal stability as compared to Al2O3 as support at higher temperatures. Ni–Co catalyst, with an explicit Ni:Co (3:1) ratio for the 75Ni25Co/MgAl2O4 provided the highest CH4 conversion and was about 1.82 times that of the 100Ni/MgAl2O4; CO2 conversion also followed similar trends. Co-existence of Ni and Co with synergic effect in an explicit Ni:Co (3:1) ratio reduced the reduction temperature and increased the amount of metal in 75Ni25Co/MgAl2O4. CH4 and CO2 conversions, TOFDRM, H2: CO ratios and catalyst deactivations were related to the concentrations of the Ni–Co and particularly an explicit ratio of 3:1 for the Ni:Co in 75Ni25Co/MgAl2O4 catalyst provided the best initial & final conversions, TOFDRM and H2:CO ratio. Detail carbon analysis suggested that the type of coke deposited on 75Ni25Co/MgAl2O4 after the DRM reaction is of the same nature and are originating from the CH4 cracking reaction and are of reactive type.  相似文献   

16.
《Journal of power sources》2006,159(2):1291-1295
Composite membranes consisting of Ni metal and Ba(Zr0.1Ce0.7Y0.2)O3 (or Ni–BZCY7) have been developed for separation of hydrogen from gas mixtures to replace Ni–BCY20 (Ni–BaCe0.8Y0.2O3), which has poor stability in CO2 and H2O-containing atmosphere. Hydrogen fluxes through these cermet membranes were measured as a function of temperature, membrane thickness, and partial pressure of hydrogen in various atmospheres. Results indicated that the Ni–BZCY7 membrane is chemically stable and display high hydrogen permeability. A maximum flux of 0.805 cm3 min−1 cm2 was obtained for a dense cermet membrane of 266-μm-thick at 900 °C using 100% H2 as the feed gas and 100 ppm H2/N2 as the sweep gas. The stable performance of Ni–BZCY7 cermet membrane during exposure to a wet gas containing 30% CO2 for about 80 h indicated that it is promising for practical applications.  相似文献   

17.
A series of different amount ZrO2-promoted SiO2 supported Ni catalysts were prepared and used for methane autothermal reforming with CO2 and O2 [MATR] to synthesis gas in a fluidized bed reactor. Pulse-injected surface reactions and in situ XRD characterizations disclosed that CO2 dissociated exclusively at the boundary between Ni and ZrO2. O species derived from CO2 dissociation overflowed to metallic Ni and accelerated the activation of methane. Ni/5ZrO2–SiO2 catalyst with larger Ni–ZrO2 boundary exhibited the best activity and stability for MATR even at an extremely space velocity 90,000 h?1.  相似文献   

18.
Dry reforming of glycerol is an interesting method for syngas production due to its H2/CO ≈ 1 that is suitable for FT synthesis. In this study, the performance of the Ni/MgO.Al2O3 catalysts with different nickel contents was investigated in glycerol dry reforming. The MgO.Al2O3 carrier was prepared by a simple sol-gel method and the nickel-based catalysts were synthesized by the wet impregnation method. The prepared catalysts possessed high BET surface area and pore volume. The TPR analysis showed a strong interaction between Ni and the catalyst support. The results demonstrated that the glycerol conversion decreased by increasing in CO2/glycerol (GRR) molar ratio. All the prepared samples showed high stability in glycerol dry reforming during 25 h of reaction, indicating the high resistance of the catalysts against carbon formation. Also, 10 wt%Ni/MgO.Al2O3 catalysts possessed the highest catalytic performance (52% of glycerol conversion at 750 °C) due to the high dispersion of nickel on the prepared carrier.  相似文献   

19.
The effect of preparation method on the performance of Ni/Al2O3 catalysts for aqueous-phase reforming of ethanol (EtOH) has been investigated. The first catalyst was prepared by a sol–gel (SG) method and for the second one the Al2O3 support was made by a solution combustion synthesis (SCS) route and then the metal was loaded by standard wet impregnation. The catalytic activity of these catalysts of different Ni loading was compared with a commercial Al2O3 supported Ni catalyst [CM (10%)] at different temperatures, pressures, feed flow rates, and feed concentrations. Based on the product distribution, the proposed reaction pathway is a mixture of dehydrogenation of EtOH to CH3CHO followed by C–C bond breaking to produce CO + CH4 and oxidation of CH3CHO to CH3COOH followed by decarbonylation to CO2 + CH4. CH4(C2H6 and C3H8) also can form via Fischer–Tropsch reactions of CO/CO2 with H2. The CH4 (C2H6 and C3H8) reacts to form hydrogen and carbon monoxide through steam reforming, while CO converts to CO2 mostly through the water–gas shift reaction (WGSR). SG catalysts showed poorer WGSR activity than the SCS catalysts. The activation energies for H2 and CO2 production were 153, 155 and 167 kJ/mol and 158, 160 and 169 kJ/mol for SCS (10%), SG (10%), and CM (10%) samples, respectively.  相似文献   

20.
CoNi/Al2O3 and MgCoNi/Al2O3 catalysts are investigated for hydrogen production from CO2 reforming of CH4 reaction at the gas hourly space velocity of 40,000 mL g−1 h−1. The MgO promoted CoNi/Al2O3 catalyst shows much higher conversions (97% for CO2 and 95% for CH4 at 850 °C) than the CoNi/Al2O3 catalyst. In addition, the stability is maintained for 200 h in CO2 reforming of CH4. The outstanding catalytic activity and stability of the MgO promoted CoNi/Al2O3 catalyst is mainly due to the basic nature of MgO, an intimate interaction between Ni and the support, and rapid decomposition/dissociation of CH4 and CO2, resulting in preventing coke formation in CO2 reforming of CH4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号