首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Energy and Buildings》2006,38(12):1409-1416
Night ventilation and active cooling coupled operation strategy is studied for the large supermarkets in cold climates in China. The model on the thermal storage of the indoor goods is set up. Furthermore, based on the thermal balance of the whole room, the temperature change model is founded. The coupled operation process is simulated for the typical supermarket buildings. The overall energy consumption of the system is analyzed. The result shows that the opening time, duration and air flow rate of night ventilation all affect the performance of active cooling. Active cooling will influence night ventilation too. It also turns out that the coupled operation leads to shorter operation time of active cooling. The various operation modes are given at different climatic conditions. Compared with the normal active cooling system, the coupled operation system can save energy at 2.99 kWh/(m2 a) in cold climates in China while 3.24 kWh/(m2 a) in Harbin.  相似文献   

2.
《Energy and Buildings》2006,38(5):522-533
This paper addresses the issue of energy performance of data centers by closely examining energy use of two data centers in commercial office buildings. The primary objective of the study is to examine an empirical energy use pattern of data centers under tropical climatic conditions, and give guidance for data centers’ design, operation and maintenance and retrofitting to achieve better energy performance. Actual energy use characteristics, design criteria, and energy and cost saving potentials were analyzed and compared between two data centers. Methodology of energy performance evaluation of data centers was discussed. The study concludes that data centers were high energy consuming areas in commercial office buildings—energy consumptions of approximately 3000 kWh/(m2 year) and 2000 kWh/(m2 year), respectively, were observed in the case studies. Power demands were often grossly over-provided in these facilities. This leaded to substantial increase in capital and running cost, which can be wasteful. Disparity in energy performance between case studies demonstrated the need for design guidelines and practical benchmarking. In one case study, approximately 56% (1.2 GWh/year) of energy consumption could be conserved through efficient designs of base infrastructure and energy consuming systems, as compared to better practice. The predicted cost saving is more than US$ 80,000 per year.  相似文献   

3.
《Energy and Buildings》2006,38(6):627-634
Reducing energy use in buildings is essential to decrease the environmental impact. Outside Gothenburg in Sweden, 20 terrace houses were built according to the passive house standard and completed in 2001. The goal was to show that it is possible to build passive houses in a Scandinavian climate with very low energy use and to normal costs. The houses are the result of a project including research, design, construction, monitoring and evaluation. The passive house standard means that the space heating peak load should not exceed 10 W/m2 living area in order to use supply air heating. This requires low transmission and ventilation losses and the building envelope is therefore highly insulated and very airtight. A mechanical ventilation system with approximately 80% heat recovery is used. The electric resistance heating in the supply air is 900 W per living unit. Solar collectors on the roof provide 40% of the energy needed for the domestic hot water. The monitored delivered energy demand is 68 kWh/m2 a. Energy simulations show that main differences between predicted and monitored energy performance concern the household electricity and the space heating demand. Total delivered energy is approximately 40% compared with normal standard in Sweden.  相似文献   

4.
《Energy and Buildings》2005,37(10):1007-1016
Solar-reflective roofs stay cooler in the sun than solar-absorptive roofs. Such “cool” roofs achieve lower surface temperatures that reduce heat conduction into the building and the building's cooling load. We monitored the effects of cool roofs on energy use and environmental parameters in six California buildings at three different sites: a retail store in Sacramento; an elementary school in San Marcos (near San Diego); and a four-building cold storage facility in Reedley (near Fresno). The latter included a cold storage building, a conditioning and fruit-palletizing area, a conditioned packing area, and two unconditioned packing areas.Results showed that installing a cool roof reduced the daily peak roof surface temperature of each building by 33–42 K. In the retail store building in Sacramento, for the monitored period of 8 August–30 September 2002, the estimated savings in average air conditioning energy use was about 72 Wh/m2/day (52%). On hot days when the afternoon temperature exceeded 38 °C, the measured savings in average peak demand for peak hours (noon–5 p.m.) was about 10 W/m2 of conditioned area. In the school building in San Marcos, for the monitored period of 8 July–20 August 2002, the estimated savings in average air conditioning energy use was about 42–48 Wh/m2/day (17–18%). On hot days, when the afternoon temperature exceeded 32 °C, the measured savings in average peak demand for hours 10 a.m.–4 p.m. was about 5 W/m2 of conditioned area. In the cold storage facility in Reedley, for the monitored period of 11 July–14 September 2002, and 11 July–18 August 2003, the estimated savings in average chiller energy use was about 57–81 Wh/m2/day (3–4%). On hot days when the afternoon temperature exceeded 38 °C, the measured savings in average peak-period demand (average cooling-power demand during peak demand hours, typically noon–6 p.m.) was about 5–6 W/m2 of conditioned area.Using the measured data and calibrated simulations, we estimated savings for similar buildings installing cool roofs in retrofit applications for all 16 California climate zones. For similar retail stores in climate zones 2 and 4–16, installing a cool roof can save about 6–15 kWh/m2/year of conditioned area. In climate zones 2–16, estimates of average peak demand savings for hours noon–5 p.m. range from 2.9 to 5.8 W/m2. For similar school buildings in climate zones 2–16, installing a cool roof can save from 3 to 6 kWh/m2/year of conditioned roof area. For all 16 climate zones estimates of average peak demand savings for hours noon–5 p.m. range from 2.6 to 3.8 W/m2. In similar cold storage buildings in all 16 climate zones, installing a cool roof can save about 4.5–7.4 kWh/m2/year of conditioned roof area. In all 16 climate zones, estimates of average peak demand savings for hours noon–5 p.m. range from 3.9 to 6.6 W/m2.  相似文献   

5.
This paper presents an evaluation of energy-related and economic aspects of production of thermal energy to heat a family house with wood briquette. The object of the study was a detached house with an area of 247 m2, situated in Olsztyn, in the north-east of Poland. The study lasted three years, from October 2006 to September 2009. The highest monthly consumption of wood briquette for thermal energy production: heating water for the central heating system and hot utility water production were recorded in January (1052–1333 kg/month). The average annual briquette consumption ranged from 6.36 to 6.72 t/year. With the mean lower heating value of briquette of 17.99 GJ/t, the mean consumption of energy in the fuel ranged from 114 to 121 GJ/year. The annual cost of heat production for a family house with briquette as fuel ranged from €572 to €651, during the 2006/2007 and 2008/2009 seasons, respectively. It would have been cheaper by €187–228 year?1 to heat the house with seasoned willow chips, whereas using alternative fuels, such as hard coal (fraction 0.5–2.5 cm) oak pellets, natural gas and heating oil would have increased the cost of heat production. If the last of those fuels had been used, it would have increased the cost 3.5-fold as compared with wood briquette.  相似文献   

6.
《Energy and Buildings》2005,37(12):1241-1249
In this paper are presented the results of experimental analysis of the influence of ventilation systems and related energy consumption on inhalable and respirable dust concentrations in fattening pigs confinement buildings. The application of different under pressure ventilation systems in reducing and controlling dust concentrations was analyzed. Optimal ventilation systems designs and the ranges of airflow velocities were defined and discussed.Airflow velocities in the finishing room, under floor, roof and both ventilations, ranged from: 0.01 to 0.10, 0.01 to 0.10 and 0.02 to 0.10 m/s, respectively.The average inhalable dust concentrations during the reference regime (no ventilation), as well as second (floor-), third (roof-) and fourth (both ventilations) regime were: 20, 20, 25 and 17 particles/cm3, respectively. The average respirable dust concentrations during the reference regime, as well as second, third and fourth regime were: 18, 19, 23 and 16 particles/cm3, respectively.Significant decrements of inhalable (F = 44.35, P  0.01) and respirable (F = 43.82, P  0.01) dust concentration, in the finishing fattening pig house, were achieved only with the fourth regime (both ventilations).  相似文献   

7.
《Energy and Buildings》2006,38(12):1369-1379
The investigation on the effect of painted facades with spectrally selective properties on the energy balance of a building is made by comparing real measured data from an outdoor test of facade samples with data calculated using the ESP-r simulation program.The following factors were investigated: influence of solar radiation, calculated with a solar model, the absorption of direct solar radiation as a function of the angle of incidence, IR radiation exchange and the influence of heat loss caused by convection.During this investigation, it was determined that the influence of solar radiation and especially the heat loss caused by convection are the most dominant influences on the examined energy balance of a building.After adapting the simulation program in order to simulate the data correctly, the influence of selective facades is investigated using an office model as an example. In the case of the location of Freiburg, Germany, two different types of outer walls are investigated and described in this publication: A well-insulated wall with a U-value of 0.42 W/(m2 K) and a poorly insulated wall with 1.95 W/(m2 K).The savings in the heating demand are higher in the case of poorly insulated walls than in well-insulated walls. In contrast to this effect, the cooling demand increases nearly in the same way for both types of walls. The tendency for condensation is also weakened, as is documented in [4].  相似文献   

8.
A set of experiments was carried out in a 1/9 reduced-scale single-track railway tunnel to investigate the effect of fuel area size on the temperature distribution and behavior of fires in a tunnel with natural ventilation. Methanol pool fires with four different fuel areas 0.6 × 0.3 m2 (1 pan), 1.2 × 0.3 m2 (2 pans), 2.4 × 0.3 m2 (4 pans) and 3.6 × 0.3 m2 (6 pans), were used in these experiments. Data were collected on temperatures, radiative heat flux and mass loss rates. The temperature distribution and smoke layer in the tunnel, along with overflow dimensions and radiant heat at the tunnel entrance were analyzed. The results show that as the fuel area enlarges, the fire gradually becomes ventilation-controlled and the ceiling temperature over the center of fire source declines. Burning at the central region of fire source is depressed due to lack of oxygen. This makes the temperature distribution along the tunnel ceiling change from a typical inverted V-shape to an M-shape. As observed in the experiments, a jet flame appeared at tunnel entrances and both the size and temperature of the flame increased with the enlargement of fuel area leading to a great threat to firefighters and evacuees in actual tunnel fires.  相似文献   

9.
《Energy and Buildings》2004,36(6):543-555
The “Solar Complex of Plan-les-Ouates” is a traditional multifamily building with some commercial and administrative areas. It was designed to consume a minimum amount of thermal energy by combining several renewable energy systems (1400 m2 of solar roof, buried pipe and exhausted air heat exchangers) with an optimised envelope and electrical equipment. Initially predicted to consume 160 MJ/m2 per year of gas, a gas energy use index (per unit heated floor area) of 246 MJ/m2 per year was measured. The energy analysis of the building, based on a 3-year period of monitoring, brought up the most relevant points that explain this difference: the real conditions of utilisation (such as the interior temperature) and the real performance of the complete technical system are not taken into account in the theoretical value. Both technical and economical aspects of the renewable energy systems were analysed in detail. An important lesson learned from this experiment is that the energy concept of buildings must be simple and consistent and the complexity of the technical installations must be carefully managed from the design-stage to the exploitation. Detailed monitoring of innovative low-energy buildings is recommended to understand the possible discrepancies between theoretical and real heat consumption and to improve the transfer of new energy technologies to large-scale real constructions.  相似文献   

10.
Sludge bio-drying is an approach for biomass energy utilization, in which sludge is dried by means of the heat generated by aerobic degradation of its organic substances. The study aimed at investigating the interactive influence of air-flow rate and turning frequency on water removal and biomass energy utilization. Results showed that a higher air-flow rate (0.0909 m3 h?1 kg?1) led to lower temperature than did the lower one (0.0455 m3 h?1 kg?1) by 17.0% and 13.7% under turning per two days and four days. With the higher air-flow rate and lower turning frequency, temperature cumulation was almost similar to that with the lower air-flow rate and higher turning frequency. The doubled air-flow rate improved the total water removal ratio by 2.86% (19.5 g kg?1 initial water) and 11.5% (75.0 g kg?1 initial water) with turning per two days and four days respectively, indicating that there was no remarkable advantage for water removal with high air-flow rate, especially with high turning frequency. The heat used for evaporation was 60.6–72.6% of the total heat consumption (34,400–45,400 kJ). The higher air-flow rate enhanced volatile solids (VS) degradation thus improving heat generation by 1.95% (800 kJ) and 8.96% (3200 kJ) with turning per two days and four days. With the higher air-flow rate, heat consumed by sensible heat of inlet air and heat utilization efficiency for evaporation was higher than the lower one. With the higher turning frequency, sensible heat of materials and heat consumed by turning was higher than lower one.  相似文献   

11.
《Building and Environment》2005,40(11):1566-1571
Based on an averaging technique, a methodology has been established to estimate an effective radon emanation factor M for residential premises. The model shows that the new term M and the ventilation rate are the essential parameters in estimating the level of indoor radon. M includes two components: the radon emanation rates of internal surface materials and the ratio of surface areas of applicable materials to premises volume. The value of M can be determined from on-site measurements. Different ventilation modes of a sampled residential unit during daytime and nighttime, with air conditioner on, window-open, and window-closed were included in site measurements. Each ventilation mode was measured twice during daytime and twice at night. During the investigation, air exchange rate, and indoor and outdoor radon levels were monitored simultaneously. The results of measurements were then used to verify the model. The value of M was found to be 31.7 Bq m−3 h−1. The model is valid if the air exchange rate is larger than 0.2 h−1.  相似文献   

12.
A national model of residential energy consumption requires consideration of the following end-uses: space heating, space cooling, appliances and lighting (AL), and domestic hot water (DHW). The space heating and space cooling end-use energy consumption is strongly affected by the climatic conditions and the house thermal envelope. In contrast, both AL and DHW energy consumption are primarily a function of occupant behaviour, appliance ownership, demographic conditions, and occupancy rate. Because of these characteristics, a bottom-up statistical model is a candidate for estimating AL and DHW energy consumption. This article presents the detailed methodology and results of the application of a previously developed set of neural network models, as the statistical method of the Canadian Hybrid Residential End-Use Energy and Greenhouse Gas Emissions Model (CHREM). The CHREM estimates the national AL and DHW secondary energy consumption of Canadian single-detached and double/row houses to be 248 PJ and 201 PJ, respectively. The energy consumption values translate to per household values of 27.8 GJ and 22.5 GJ, and per capita values of 9.0 GJ and 7.3 GJ, respectively.  相似文献   

13.
14.
This work deals with the interaction between water droplet flows and smoke in a fire event in a confined and ventilated enclosure. The objective is to identify the specific effect of water spray in the specific environment of a confined and ventilated enclosure. The study is based on 17 large-scale fire tests performed in one room of 165 m3 ventilated at a renewal rate of 15.4 h−1. The fire source is a propane gas burner with a heat release rate of between 140 and 290 kW. The water spray system consists of two Deluge nozzles with a nozzle coefficient of 26 l/min/bar0.5. The test parameters are the fire heat release rate, the water flow rate, from 50 to 124 l/min, and the activation time. The study focuses on three topics, the interaction of the droplets with the smoke, the droplet evaporation process and the energy transferred to the droplets. The water spray significantly modifies the smoke stratification by mixing and cooling the gas phase. The rate of droplet evaporation has been determined from the water mass balance and is of the same order of magnitude as the rate of water vapor production by the combustion reaction. Heat transfer from the smoke to the droplets has been investigated using the energy balance equation. For a fire scenario in a confined and ventilated enclosure, the energy released by the fire is mainly transferred to the walls and extracted by the ventilation network. In the event of water spray activation, a significant share, up to 65%, is transferred to the droplet flows.  相似文献   

15.
Inverse heat transfer analysis (IHT) was used to measure the full-field heat fluxes on a small scale (0.9 m×0.9 m×0.9 m) stainless steel SS304 compartment exposed to a 100 kW diffusion flame. The measured heat fluxes were then used in a thermo-mechanical finite element model in Abaqus to predict the response of an aluminum 6061-T6 compartment to the same exposure. Coupled measurements of deflection and temperature using Thermographic Digital Image Correlation (TDIC) were obtained of an aluminum compartment tested until collapse. Two convective heat transfer coefficients, h =35 W/m2-K and h =10 W/m2-K were examined for the thermal model using the experimentally measured heat fluxes. Predictions of the thermal and structural response of the same compartment were generated by coupling Fire Dynamics Simulator (FDS) and Abaqus using the two values for h, h =35 W/m2-K and h from convection correlations. Predictions of deflection and temperature using heat fluxes from IHT and FDS with h=35 W/m2-K agreed with experimental measurements along the back wall. The temperature predictions from the IHT-Abaqus model were independent of h, whereas the temperature predictions from the FDS-Abaqus model were dependent on h.  相似文献   

16.
This study presents findings of indoor environmental quality (IEQ) investigations conducted in elementary schools׳ classrooms in the United Arab Emirates (UAE). Average TVOC, CO2, O3, CO, and particle concentrations measured in the classrooms were 815 µg/m3, 1605 ppm, 0.05 ppm, 1.16 ppm, and 1730 µg/m3, respectively. Whereas, local authority known as Dubai Municipality recommended 300 µg/m3, 800 ppm, 0.06 ppm, 9 ppm, and 150–300 µg/m3 for TVOC, CO2, O3, CO, and particle, respectively. Dubai Municipality recommended temperature and relative humidity (RH) levels of 22.5 °C to 25.5 °C and 30%–60%, respectively. Average temperature and RH levels measured in the classrooms were 24.5 °C and 40.4%, respectively. Average sound level in the classrooms was 24 dB greater than recommended sound level limit of 35 dB. Six (6) classrooms had average lux levels in the range of 400–800 lux. Two (2) classrooms had average lux levels in the range of 100–200 lux. The remaining classrooms had lux levels around the recommended 300 lux. High occupancy density was observed in majority of the studied classrooms. Observations during walkthrough investigations could be used to explain measured IEQ data. Poor IEQ conditions in the studied classrooms highlight the need for further research investigation to understand how poor classrooms׳ IEQ condition could influence students׳ health, comfort, attendance rate, and academic performance.  相似文献   

17.
A risk analysis is presented for an enclosed 30×30 m car park in which LPG (liquefied petroleum gas) vehicles are allowed to park. An event tree analysis is used to define 26 different incident scenarios and their probabilities. FLACS, a specialised CFD program, is used to calculate the formation of a flammable vapour cloud and its dilution by means of the ventilation system as well as the overpressures generated in a vapour cloud explosion. Existing empirical methods are used to calculate the overpressures generated by a BLEVE and the heat radiated by a fire ball and a jet fire. The simulations have shown that a release from a 70 l LPG fuel tank can lead to vapour clouds of up to 200 m3 that fill the entire height of the car park, while the explosion simulations have shown that such vapour clouds can lead to overpressures above 30 kPa in the entire car park. The ventilation simulations have shown that high flow rates of approximately 0.060 m3/s per m2 of car park floor area are necessary to rapidly dilute these large vapour clouds.  相似文献   

18.
《Energy and Buildings》2004,36(10):995-1001
Sensory pollution loads were measured in six non-smoking office buildings with mechanical ventilation without recirculation, and in a non-smoking department store with an air-conditioning system and recirculation. Untrained panels assessed the air quality on normal weekdays with occupants in the buildings, and in the case of office buildings, also on weekends without occupants present. On both occasions the ventilation system was in operation as on a normal working day. Outdoor airflow rate, air temperature, relative humidity and concentration of carbon dioxide were measured. The sensory pollution load from the building (without occupants) was found in offices to be 0.11 ± 0.09 olf/m2 floor, which agrees well with the load recommended for low-polluting buildings in CEN CR 1752. This load is only half of the sensory pollution load found in previous investigations in offices and assembly halls where smoking was allowed. The load from building and merchandise in the department store was 0.15 olf/m2 floor. A table is provided listing the mean sensory pollution load of the buildings measured in the present and in previous studies carried out in the period from 1988 to 2001 in different types of buildings in Europe. The table covers 120 buildings including offices and assembly halls (with and without previous smoking), schools, kindergartens and a department store.  相似文献   

19.
《Energy and Buildings》2006,38(6):695-700
Households in Lithuania consume about 1/3 of total final consumption of fuel energy. In order to reduce imports of fossil fuel and emissions of dangerous pollutants, solar energy could be used for the above-mentioned needs. That would require large collector areas and volumes for seasonal heat storage. In wintertime the wind speed velocity is much higher than in summertime in Lithuania. Therefore, it is advisable to study meeting the thermal needs of single family houses by combining use of wind and solar energy. To this end analytical research has been made by using deterministic method. The analysis has been carried out for the case when 1 m2 of heated room area requires 0.25 m2 of solar collector area and 0.5 m2 working area of wind turbine rotor. Heat storage is planned for 24 h. By using such a hybrid system during the heating season 42.6–56.2% of heating needs for space and domestic hot water are satisfied. However, for individual days (especially from May to October) a surplus of generated heat is formed and it reaches about 53.6% of space heating needs per year. This relative surplus of energy could be used for transmitting wind power-plant energy to the electric network or in a household and thermal energy can be used for drying agricultural produce, heating greenhouses, open swimming pools and satisfying other needs.  相似文献   

20.
《Energy and Buildings》2002,34(7):705-714
Electricity energy savings potential by eliminating air leakage from ducts in large commercial buildings is on the order of 10 kWh/m2 per year (1 kWh/ft2). We have tested, in two large commercial buildings, a new technology that simultaneously seals duct leaks and measures effective leakage area of ducts. The technology is based upon injecting a fog of aerosolized sealant particles into a pressurized duct system. In brief, this process involves blocking all of the intentional openings in a duct system (e.g. diffusers). Therefore, when the system is pressurized, the only place for the air carrying the aerosol particles to exit the system is through the leaks. The key to the technology is to keep the particles suspended within the airstream until they reach the leaks, and then to have them leave the airstream and deposit on the leak sites. The principal finding from this field study was that the aerosol technology is capable of sealing the leaks in a large commercial building duct system within a reasonable time frame. In the first building, 66% of the leakage area was sealed within 2.5 h of injection, and in the second building 86% of the leakage area was sealed within 5 h. We also found that the aerosol could be blown through the VAV boxes in the second building without impacting their calibrations or performance. Some remaining questions are: (1) how to achieve sealing rates comparable to those experienced in smaller residential systems; and (2) what tightness level these ducts systems can be brought to by means of aerosol sealing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号