共查询到20条相似文献,搜索用时 11 毫秒
1.
A series of phase transitions in (1-x)NaNbO3-xBaZrO3 ((1-x)NN-xBZ) ceramics was observed from antiferroelectric orthorhombic phase to ferroelectric orthorhombic phase and finally into ferroelectric rhombohedral phase with increasing x. An electric field induced irreversible phase transition was found in different compositions, irrespective of their virgin phase structures. Particularly, an antiferroelectric orthorhombic phase is irreversibly transformed into a ferroelectric monoclinic phase within 0.02?≤?x?≤?0.05, leading to a giant poling strain of ~0.58%. This is much larger than that observed in ferroelectric orthorhombic (0.06?≤?x?≤?0.07) and rhombohedral phases (0.08?≤?x?≤?0.11) suffering from an irreversible ferroelectric-ferroelectric (monoclinic) phase transition. The synchrotron x-ray diffraction and the measurement of longitudinal and transverse strains suggest that this irreversible phase transition should involve not only a distinct volume expansion, but also an obvious lattice elongation. The present study demonstrates a unique nature of the composition and field dependent phase stability and an underlying mechanism of giant poling strains in NN-BZ ceramics. 相似文献
2.
《Journal of the European Ceramic Society》2019,39(2-3):295-304
Ferroelectrics with high electrostrictive properties are of great interest in fundamental researches and industrial applications. In this work, the phase structural evolution, dielectric properties as well as electrostrictive properties in barium strontium titanate [(Ba1-xSrx)TiO3, BST] lead-free ferroelectrics with x from 0.05 to 0.4 were investigated in details. High electric field-induced strain (∼0.2%) at 60 kV/cm are obtained in x = 0.05 and 0.1 compositions. More importantly, almost purely positive strains with ultra-low hysteresis (<8%) determined from bipolar strain-electric field curves are observed in compositions with x from 0.05 to 0.3, suggesting the dominating role of electrostrictive effect. Temperature-insensitive and composition-insensitive longitudinal electrostrictive coefficient Q33 for BST ceramics with giant values from 0.0409 m4/C2 to 0.0479 m4/C2 is identified. These features suggest that BST ceramics not only possess high electric field-induced strain with ultra-low hysteresis and giant Q33, but also are good candidates for potential application in high-precision actuator devices. 相似文献
3.
Ge Wang Zhilun Lu Zhenbo Zhang Antonio. Feteira Chiu C. Tang David A. Hall 《Journal of the American Ceramic Society》2019,102(12):7746-7754
(1-x)Na0.5Bi0.5TiO3-xNaNbO3 (x = 0.02, 0.04, 0.06, and 0.08) ceramics were fabricated by solid-state reaction. High-resolution synchrotron x-ray powder diffraction (SXPD) data, coupled with macroscopic electromechanical measurements, reveal the occurrence of an electric field-induced irreversible crystallographic transformation for x = 0.02 and 0.04, from a pseudo-cubic non-ergodic relaxor to a rhombohedral or coexisting rhombohedral-tetragonal long range-ordered ferroelectric phase, respectively. The highest unipolar electrostrain, corresponding to an effective longitudinal piezoelectric strain coefficient of approximately 340 pm V−1, was obtained for x = 0.04; this effect is attributed to enhanced domain switching as a result of the co-existing rhombohedral and tetragonal phases for this composition, which is critical for piezoelectric actuator applications. 相似文献
4.
《Ceramics International》2017,43(7):5367-5373
Lead-free piezoceramics (Na(1+x)/2Bi(1-x)/2)0.94Ba0.06Ti1-xNbxO3 (BTN100x) were prepared using conventional solid-state reaction method. The structures, field- induced strain, AC impedance of sintered ceramics were investigated. The pure perovskite solid solution BTN3 exhibited giant electric-field-induced strain of 0.478% under an electric field of 70 kV/cm at ambient temperature, meanwhile, the normalized strain (Smax/Emax) reached up to 654 pm/V. The giant strain was insensitive to temperature and exhibited excellent fatigue resistance performance within 106 switching cycles, making it a promising candidate material for actuator applications. Complex AC impedance spectra confirmed the contribution of grain effect to resistivity behavior. The field-induced giant strain was attributed to the phase transition between ferroelectrics and relaxor ferroelectrics induced by introducing Nb2O5. 相似文献
5.
Lead-free (Bi0.5Na0.5)1-xSrxBi4Ti4O15 ceramics (x = 0–0.9) are fabricated by solid state reaction process. XRD analysis shows the symmetry divergence from tetragonal to orthorhombic phase accompanied by morphotropic phase boundary with increasing strontium content. Raman spectra confirm the incorporation of strontium into (Bi2.5Na0.5Ti4O13)2- layers. SEM graphs exhibit the typical plate-like morphology with regular variation of grain size and crystallization as strontium increases. Multistage ferroelectric transition is observed with x = 0.2–0.4. Piezoelectric performance measurements present the well thermal stability at x = 0.4. The dielectric properties display a shifting of Curie temperature towards low temperature with increasing strontium ions. It can be due to the crystal lattice distortion by larger radius of strontium and the increasing tolerance factor. ac conductivity and impedance measurements suggest that electron hopping mainly contributes to the low temperature region. Ionization conductivity by oxygen vacancy migration including first-ionization and double-ionization plays the dominating role in the middle and high temperature region. The controllable properties indicate the potential applications for electric devices of (Bi0.5Na0.5)1-xSrxBi4Ti4O15 ceramic. 相似文献
6.
Yu Huan Tao Wei Zhenxing Wang Cunyu Lei Feilong Chen Xiaohui Wang 《Journal of the European Ceramic Society》2019,39(4):1002-1010
(K,Na)NbO3 (KNN)-based ceramics have attracted considerable attention owing to their excellent piezoelectric performance in the polymorphic phase boundary (PPB); however, many researchers have found that the optimal composition usually appears on the tetragonal side near the PPB zone. In this study, it is found that the maximum piezoelectric performance is achieved in the PPB region for unpoled ceramics due to the more efficient and facile polarization switching. However, the most outstanding piezoelectricity shifts to the tetragonal side after the ceramics are poled. Raman spectra and first-principles calculations reveal the occurrence of a phase transformation from a tetragonal to monoclinic structure under an external electric field. Hence, the unpoled tetragonal ceramics transform to a two-phase coexistence condition after the poling process and exhibit the best electrical properties driven by the combined effects of polarization switching and rotation. This study reveals that the electric-field-induced phase transformation leads to the optimal composition on the tetragonal side, and this can provide useful guidance for the design of high-performance KNN-based materials. 相似文献
7.
An experimental study of the finite strain response of annealed α and β crystalline isotactic polypropylene (iPP) was conducted over a range of temperatures (25, 75, 110 and 135 °C) using uniaxial compression tests. Uniaxial compression results indicate nearly identical macroscopic stress vs. strain behavior for α-iPP and for β-iPP to true strains in excess of −1.1 at room temperature despite the different initial morphologies. At larger compressive strains (>1.2), β-iPP shows more rapid strain hardening. The orientation of crystalline planes during straining differs at room temperature from that at high temperature, indicating a change of slip mechanisms as temperature increases. In addition, strain-induced crystallization occurred at the highest temperature examined in α-iPP. A continuous transformation of β crystals to α crystals with inelastic deformation at room temperature was observed and it was facilitated at higher deformation temperatures. Scanning electron microscopy (SEM) observations of deformed β-iPP provide strong evidence that the transformation is achieved via a solid-to-solid mechanism despite the different helical hands in α and β crystal structures. Molecular simulations were used to investigate a conformational defect in the 31 helical chains of β-iPP, characterized by a 120° helical jump. The propagation of this conformational defect along molecular chains provides the reversal of helical hand required by the solid-to-solid transformation. The β→α phase transformation in iPP is proposed to be accomplished via a solid transformation that includes slip along β(110) and β(120) planes during shear of the crystal lattice. 相似文献
8.
Yonghao Luo Xuyue Wang Chenglin Wang Yebing Hu Mucan Liu 《Ceramics International》2018,44(9):10412-10419
Generally speaking, in the melting process of alumina ceramics, all the metastable transitional phase will be gradually transformed into the stable α phase with rising temperature due to an irreversible lattice reconstruction. However, under the action of pulsed laser cutting, the lattice structure of α-alumina needs to withstand the great stress from instantaneous high energy impact. Thus, a slip dislocation of 1/4?at. diameter is generated on the atomic plane of each second basal layer to produce γ-alumina. In this work, a ceramic plate comprised of α-alumina is taken as the object of study. The α-to-γ reverse phase transformation of the molten removal is verified by the observed microstructure from scanning electron microscope (SEM) and transmission electron microscope (TEM). Simultaneously, the X-ray diffraction (XRD) investigation shows that the basis of molten removal after laser cutting is still α-alumina. The micrographs of octahedral corners or hexagons are shown in different observation directions. There is no γ-alumina phase transformation product in the spherical granular removal at each vapor-to-melt ratio (rvmr). In contrast, γ-alumina is detected in the adhering slag with a micro-morphology of cubic phase. The mass fraction is increased with the rising of vapor-to-melt ratio. At the same time, θ-alumina also exists in some spattering removal as intermediate product between α and γ phase. It is indicated that the generation of α-to-γ reverse phase transformation occurs mainly in the melting process of temperature rise, and the maintenance of phase transformation results mainly occurs during cooling process of condensation. 相似文献
9.
《Ceramics International》2016,42(3):3938-3946
xCeO2-doped Bi0.487Na0.427K0.06Ba0.026TiO3 lead-free piezoelectric ceramics (BNTC1000x, x=0, 0.3, 0.6, 0.8, 1.0, 1.2, 1.4 wt%), were synthesized by the solid-state reaction method. XRD patterns showed that all BNTC1000x ceramics exhibit pure single perovskite phase. At the critical composition BNTC12, a large electric-field-induced strain of 0.39% with normalized strain (Smax/Emax) of 561 pm/V was obtained under an electric field of 65 kV/cm. The ferroelectric phase was fully poled with electric field, and depoled once the applied electric field was removed. During that cycle, the non-180°-domains repeated switching and back-switching and the large strain was induced. The relaxation behavior was involved in BNTC1000x ceramics and induced by oxygen vacancy migration. Besides, this behavior was more predominant in BNTC12 than in BNTC0. 相似文献
10.
《Journal of the European Ceramic Society》2023,43(11):4766-4773
Origins of the unipolar strain, strain hysteresis, and remnant strain of Mn-modified BF-BT ceramics near the pseudo-cubic and rhombohedral (PC-R) phase boundary, before and after poling treatments, were investigated by high-energy synchrotron X-ray diffraction. The largest unipolar strain of BF-BT ceramics was found to occur at the composition with a single pseudo-cubic phase, rather than the phase boundary composition, owing to the synergetic contributions from the reversible phase transition of PC-R phase, non-180° domain switching, and lattice distortion. It is interesting to find that the phase boundary composition exhibits an irreversible PC-R phase transition, where its unipolar strain after poling is attributed to the lattice distortion. The lowest strain hysteresis and remnant strain were observed in BF-BT ceramics with rhombohedral phase, due to the fact that the reversible lattice distortion dominates the strain level. These new findings on BF-BT solid solutions are expected to provide new insights on the strain mechanisms of perovskite-structured ferroelectric materials. 相似文献
11.
《Journal of the European Ceramic Society》2017,37(4):1437-1447
In this work, the (1-x)(0.8Na0.5Bi0.5TiO3-0.2K0.5Bi0.5TiO3)-xSrTiO3 (NKBT-xST) incipient piezoelectric ceramics with x = 0–0.07 (0ST-7ST) were prepared by the solid-state reaction method and their structural transformation and electromechanical properties were investigated as a function of ST content. As the ST content increases, the long-range ferroelectric order is disrupted, and the ferroelectric-relaxor phase transition temperature (TFR) shifts to around room temperature for NKBT-5ST ceramics, accompanied by a relatively high electrostrain of 0.3% at 6 kV/mm. The large strain response associated with the vanished ferroelectric properties around TFR can be attributed to the reversible relaxor-ferroelectric phase transition. The electric-field-temperature (E-T) phase diagrams were established, and the transition between the two field-induced long-range ferroelectric states were found to take place via a two-step switching process through an intermediate relaxor state. The threshold electric field to trigger the conversion between ferroelectric state and relaxor state depends strongly on the dynamics of polarization relaxation, which is influenced by temperature and composition. 相似文献
12.
《Journal of the European Ceramic Society》2017,37(7):2591-2604
Recently developed Bi0.5Na0.5TiO3(BNT)-based piezoceramics face two urgent obstacles: high driving field required to trigger large strain and poor temperature stability. Highly oriented (1-x)(0.83Bi0.5Na0.5TiO3-0.17Bi0.5K0.5TiO3)-xNaNbO3 (BNT-BKT-xNN) piezoceramics were synthesized using NN templates to resolve both obstacles. Measurements of polarization and strain hysteresis loops as well as phase transition temperature revealed a phase evolution from ergodic relaxor to ferroelectric phases, generating a high strain of 0.43% and large Smax/Emax = 720pm/V for textured BNT-BKT-4NN ceramics. The field-dependent strain was largely depended on the degree of texturing. Most intriguingly, grain-oriented specimens provided excellent actuating performance characterized by both large Smax/Emax = 693 pm/V at a low driving field of 45 kV/cm and enhanced temperature stability with Smax/Emax = 537pm/V at 120 °C. This was basically ascribed to the facilitated switching between ergodic relaxor and ferroelectric phases owing to the grain-oriented structure. As a consequence, design of <00l> oriented microstructure opens the possibility to produce efficient BNT-based piezoceramics for transferral into real-world applications. 相似文献
13.
14.
15.
The phase transformation between diamond and graphite has been studied by calculating the transiting probability of the carbon atoms over a potential barrier. For the first time, the boundaries of the proposed metastable regions of diamond and graphite have been estimated theoretically, and the currently used characteristic paths of pressure-temperature for synthesizing diamond using a high pressure and high temperature (HPHT) method can be understood. 相似文献
16.
《Journal of the European Ceramic Society》2019,39(15):5036-5047
Thermodynamic parameters of the YO1.5-TaO2.5 system were obtained, and the effects of elastic strain energy and diffusion on phase transformation of YTaO4 were analyzed in this work. The YO1.5-TaO2.5 system was critically modeled using the CALPHAD technique based on our calculated formation energies by DFT and available experimental data. According to DFT calculations, M′-YTaO4 was suggested to be the thermodynamically stable phase at low temperature. For a displacive transformation of T→M between the equilibrium tetragonal and monoclinic YTaO4, our calculations suggested it cannot be hindered by elastic strain energy. For a diffusive transformation of T→M′, it can be divided into T→M and M→M′. Diffusive transition of M→M′ was likely to be impeded due to large diffusion energy barrier, which was calculated to be 3.260 eV. However, the driving force ΔG M→M′ is about -0.121 kJ/mol. The large diffusion energy barrier and small driving force may be the main reason that T cannot transform to M′ after cooling. 相似文献
17.
Yazhu Dong Zhiyong Zhou Ruihong Liang Xianlin Dong 《Journal of the American Ceramic Society》2022,105(2):1558-1567
Phase structure has a strong influence on the temperature stability of ceramics; however, their influence on BiScO3-xPbTiO3 has been neglected. To meet the requirements for practical applications, (0.98-x)BiScO3-xPbTiO3-0.02Bi(Sn1/3Nb2/3)O3 (BS-xPT-BSN, 0.59 ≤ x ≤ 0.65) polycrystalline ferroelectrics with rhombohedral phase, morphotropic phase boundary (Cm and P4mm coexisting), and tetragonal phase has been prepared and studied. The relationship between the phase structures and temperature stability is established from the macro properties as well as the underlying domain behaviors. The results show that the tetragonal phase is not sensitive to temperature because of its stable domains, which is a positive motivator for improving the temperature stability of ceramics. This work provides a new strategy for the design of high-temperature piezoelectric ceramics in the future. 相似文献
18.
The effect of Ta addition on the bipolar fatigue characteristics of lead-free KNL-NSTx ceramics (x = 0, 0.04, 0.07 and 0.11 mol%) is studied. Bipolar cycling up to 1 × 106 cycles leads to strong degradation of the polarization in unmodified KNL-NS ceramics. This can be explained by the development of strong domain wall pinning, leading to the build-up of high local stresses and consequently microcracking of the material. The addition of Ta reduces the domain wall pinning effect and improves the bipolar fatigue resistance. In order to understand the fatigue mechanism, a model based on oxygen vacancy accumulation is proposed. This model is expected to guide future fatigue studies that are concerned with novel lead-free KNN-based materials. 相似文献
19.
《Journal of the European Ceramic Society》2020,40(12):3918-3927
In this work, (Bi0.5K0.5)1-xSrxTiO3 compositions (x = 0.03∼0.18) are designed to clarify the role of normal-relaxor ferroelectric phase transition and morphotropic phase boundary on dielectric, piezoelectric and electrostrain properties. With increasing strontium content, tetragonal distortion decreases and tetragonal and pseudocubic phases coexist in 0.09 ≤ x ≤ 0.15 compositions; the spontaneous phase-transition temperature and curie temperature decrease, as certified by phase-structure, dielectric properties and Raman spectra analysis. Optimized piezoelectric constant ∼106 pC/N and electrostrain ∼0.17 % are obtained for (Bi0.5K0.5)0.88Sr0.12TiO3 composition. Piezoelectric force microscopic technique is exploited to clarify the origin of enhancement in macroscopic performances. Increase in temperature enhances ferroelectric performance and a large strain value ∼0.25 % with low hysteresis ∼27 % are obtained at 140 °C for the optimized composition, which are believed to originate from electric-field induced relaxor-to-ferroelectric phase transition with thermally-activated reduced energy barriers. This work clearly demonstrates that lead-free Bi0.5K0.5TiO3-based ceramics are another promising bismuth-based species in applications of piezoelectric sensors and actuators. 相似文献
20.
《Ceramics International》2022,48(12):17246-17252
Herein, (0.95?x)K0.48Na0.52NbO3-0.05SrTiO3-xCaZrO3 piezoelectric ceramics were prepared using a conventional solid sintering process, and their microstructures, phase structures, and ferroelectric, dielectric, and strain properties were studied. The crystal structure of the ceramics changed from the coexistence of an orthogonal–tetragonal phase on the orthogonal side at x = 0 to that on the tetragonal side at x = 0.02 by improving the orthogonal–tetragonal transition temperature (~20 °C) with increasing CaZrO3 (abbreviated as CZ) doping. A high electric field–induced strain of 0.33% with a Curie temperature of Tc = 256 °C was obtained at x = 0.02 and was approximately two times that observed at x = 0. The dielectric constant and maximum polarization were the highest at x = 0.02 in this (0.95?x)K0.48Na0.52NbO3-0.05SrTiO3-xCaZrO3 system. These materials would be promising lead-free ceramics in the future. 相似文献