首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li2O-Al2O3-SiO2 (LAS) glass-ceramics have important industrial applications and bulk nucleation is usually achieved by using nucleating agents. In particular, P2O5 is an efficient agent in glasses containing a low level of Al2O3 but its role in the first stages of nucleation is not well established. In this study, we combine structural investigations from local to mesoscales to describe the structural evolution during crystallization of LAS glass-ceramics. Local environment is probed using 29Si and 31P MAS-NMR, indicating organization of P in poorly crystallized Li3PO4 species prior to any crystallization. To better understand the detailed nanoscale changes of the glass structure, 31P-31P DQ-DRENAR homonuclear correlation experiments have been carried out, revealing the gradual segregation of P atoms associated with the formation of disordered Li3PO4. Small-angle neutron scattering data also show the apparition of nanoscale heterogeneities associated with Li3PO4 species upon heating treatments and allow the determination of their average sizes. These new structural information enhance our understanding of the role of P in nucleation mechanisms. Nucleation is initiated by gradual change in P environment implying P segregation upon heating treatments, forming disordered Li3PO4 heterogeneities. The segregation of P atoms enables the precipitation of meta- and disilicate phases.  相似文献   

2.
《Ceramics International》2021,47(24):34380-34387
The Li2O–Al2O3–SiO2 (LAS) glass ceramics are prepared by one-step thermoelectric treatment. The influence of thermoelectric treatments on LAS glass-ceramics were studied. The crystal phase composition and microstructure of the LAS glass-ceramics were investigated by DSC, SEM, XRD and FTIR. Moreover, the thermal expansion performance and light transmittance of LAS nanocrystalline glass were characterized. The results show that low-expansion transparent LAS nanocrystalline glass can be produced in a short time by thermoelectric treatment. The free energy of nucleation and the degree of polymerization of the glass network are reduced by the electric field. The key is that the electric field polarizes Ti and Zr ions at the crystallization temperature, so that the crystal nuclei repel the same poles. This allows uniform crystal distribution, promotes crystallization and reduces one-step crystallization of crystal agglomeration. This proves that the rapid preparation of nanocrystalline glass by the one-step method is feasible, and provides a reference for the future one-step processing of glass-ceramics.  相似文献   

3.
《Ceramics International》2022,48(9):12699-12711
The effect of variation of MgO (1.5, 4.5 and 7.5 mol%) content on glass structure, crystallization behavior, microstructure and mechanical properties in a Li2O–K2O–Na2O–CaO–MgO–ZrO2–Al2O3–P2O5–SiO2 glass system has been reported here. Increased amount of MgO enhanced the participation of Al2O3 as a glass network former along with [SiO4] tetrahedra, reducing the amount of non-bridging oxygen (NBO) and increasing bridging oxygen (BO) amount in glass. The increased BO in glass resulted in a polymerized glass structure which suppressed the crystallization and subsequently increased the crystallization temperature, bulk density, nano hardness, elastic modulus in the glasses as well as the corresponding glass-ceramics. MgO addition caused phase separation in higher MgO (7.5 mol%) containing glass system which resulted in larger crystals. The nano hardness (~10 GPa) and elastic modulus (~127 GPa) values were found to be on a much higher side in 7.5 mol% MgO containing glass-ceramics as compared to lower MgO containing glass-ceramics.  相似文献   

4.
The effect of ZnO/K2O (Z/K) ratio on the crystallization sequence and microstructure of lithium disilicate (Li2Si2O5: LS2) glass-ceramics was carefully investigated for the SiO2-Li2O-K2O-ZnO-P2O5 system. The Z/K ratios of precursor glasses were varied from 0 to 3.5 while the nucleating agent of P2O5 and glass modifiers of ZnO plus K2O were fixed to have 1.5 and 4.5 mol% relative to LS2, respectively. For the samples prepared by two-stage heat treatments of 500 °C for 1 h and 800 °C for 2 h in air, the LS2 nucleation rate was increased with increasing the Z/K ratio due to the variation in crystallization sequence from type II (Li2SiO3: LS) to type I (LS + LS2) in addition to an amorphous phase separation in base glass. Consequently, with increasing the Z/K ratio, the LS2 crystalline phase within the glass matrix continuously changed from larger acicular ones to smaller equiaxed ones.  相似文献   

5.
《Ceramics International》2023,49(12):20061-20070
Alkali-aluminaborate glass-ceramics doped with Cr ions are synthesized by volume crystallization. According to non-isothermal DSC method three parallel processes occur in material: 2D Avrami-Yerofeev nucleation, 2D and 3D crystallization. During the heat treatment, the LiAl7B4O17 crystalline phase is formed. With Li2O content rising crystallinity of the material increases from 27 to 69% and the crystalline field strength Dq/B of Cr3+ increases from 2.25 to 3.55. The photoluminescence spectra possess intense bands at 685, 700, and 715 nm for glass with 6.8 mol.% Li2O and higher and its decay kinetics is described by the sum of two exponentials. The maximum luminescence QY obtained is 50% at 16.1 mol.% Li2O. The highest conversion efficiency of the 532 nm LED luminescence obtained by glass-ceramics with chromium is 10%. Thus, Cr-doped alkali-alumina-borate glass-ceramics are a promising material for use in the design of radiation sources for the red and NIR spectral regions.  相似文献   

6.
《Ceramics International》2023,49(5):7737-7745
Glass-ceramics without nucleating agents usually undergo surface crystallization, which deteriorates the overall performance of the products. In this paper, we evaluated the effects of the metastable MgAl2Si3O10 crystalline phase on the crystallization behavior of a MgO–Al2O3–SiO2 (MAS) glass without nucleating agents and mechanical properties of the glass-ceramics obtained. The results demonstrated that the precipitation of metastable MgAl2Si3O10 crystallites promotes the crystallization mechanism transformed from surface crystallization into volume crystallization with two-dimensional crystal growth. Furthermore, the grain size of MgAl2Si3O10 near the surface of the prepared glass-ceramics was larger than that of MgAl2Si3O10 inside, which helps to generate compressive stress and improves its mechanical properties. The glass-ceramics containing metastable MgAl2Si3O10 phase exhibited an enhanced hardness in the range of 7.6 GPa–9.5 GPa for indentation loads ranging from 2.94 N to 98 N, and indentation size effect behavior was observed in Vickers hardness tests of both MAS glass and glass-ceramics. The load-independent hardness values for MAS glass and glass-ceramics were reliably evaluated by the modified proportional specimen resistance (MPSR) model of 7.1 GPa and 7.6 GPa, respectively, with a high correlation coefficient of more than 0.9999. This work reveals the unexploited potential of the metastable phase in improving the crystallization ability and mechanical properties of glass-ceramics.  相似文献   

7.
The effect of Al2O3 and K2O content on structure, sintering and devitrification behaviour of glasses in the Li2O–SiO2 system along with the properties of the resultant glass–ceramics (GCs) was investigated. Glasses containing Al2O3 and K2O and featuring SiO2/Li2O molar ratios (3.13–4.88) far beyond that of lithium disilicate (Li2Si2O5) stoichiometry were produced by conventional melt-quenching technique along with a bicomponent glass with a composition 23Li2O–77SiO2 (mol.%) (L23S77). The GCs were produced through two different methods: (a) nucleation and crystallization of monolithic bulk glass, (b) sintering and crystallization of glass powder compacts.Scanning electron microscopy (SEM) examination of as cast non-annealed monolithic glasses revealed precipitation of nanosize droplet phase in glassy matrices suggesting the occurrence of phase separation in all investigated compositions. The extent of segregation, as judged from the mean droplet diameter and the packing density of droplet phase, decreased with increasing Al2O3 and K2O content in the glasses. The crystallization of glasses richer in Al2O3 and K2O was dominated by surface nucleation leading to crystallization of lithium metasilicate (Li2SiO3) within the temperature range of 550–900 °C. On the other hand, the glass with lowest amount of Al2O3 and K2O and glass L23S77 were prone to volume nucleation and crystallization, resulting in formation of Li2Si2O5 within the temperature interval of 650–800 °C.Sintering and crystallization behaviour of glass powders was followed by hot stage microscopy (HSM) and differential thermal analysis (DTA), respectively. GCs from composition L23S77 demonstrated high fragility along with low flexural strength and density. The addition of Al2O3 and K2O to Li2O–SiO2 system resulted in improved densification and mechanical strength.  相似文献   

8.
The effects of substituting Al2O3 with B2O3 on the structure, crystallization, mechanical properties, thermal properties and optical properties of translucent mica glass-ceramics were thoroughly investigated. The results demonstrated that the addition of 0.5 wt% B2O3 was optimum for glass precipitation, which increases the crystallinity of glass-ceramics and provides good translucency. When the content of B2O3 was greater than 0.5 wt%, both crystallinity and translucency decreased noticeably. The replacement of B2O3 for Al2O3 had no influence on the type of crystal phase and the precipitation of tetrasilicic fluoromica with non-stoichiometric ratio, while it did have an effect on the crystallinity and structure. The crystal sizes of glass-ceramics were in the nanoscale range and the transmittance test results indicated that they exhibit excellent translucency.  相似文献   

9.
Generally, highly crystalline transparent glass-ceramics possess excellent physical and chemical properties compared to organic and other inorganic optical materials. We have successfully prepared highly crystalline transparent glass-ceramics in the MgO-Al2O3-SiO2 system by "extreme-time" nucleation & "finite-time" crystallization processes using P2O5, ZrO2 and TiO2 as multiple nucleating agents. The results revealed that the crystallization of glass is controlled by a three-dimensional interfacial crystal growth process. These glass-ceramics mainly consisted of cordierite crystals with a residual glassy phase, and crystallinity increased with crystallization time, but light transmittance decreased with crystallization time due to enlarged grain sizes. EDS mapping revealed a uniform distribution of elements within the glass-ceramic. In the optimal preparation condition (825?°C/96?h?+?990?°C/3?h), these glass-ceramics exhibited a high crystallinity (87.3?vol. %), high transmittance (78%), and excellent mechanical properties. This work provides a roadmap for preparing highly crystalline transparent glass-ceramics for applications in optical engineering.  相似文献   

10.
ZrO2 is an effective nucleation agent for low-expansion lithium–aluminum silicate (LAS) glass–ceramic (GC) with high Al2O3 content. However, the effect of ZrO2 is still not fully understood in LAS glasses with low contents of Al2O3 and P2O5. In this work, the effect of ZrO2 on the phase separation and crystallization of Li2O–Al2O3–SiO2–P2O5 glasses were investigated. The results revealed that ZrO2 significantly increased Tg and the crystallization temperature of Li2SiO3 and Li2Si2O5 crystals. Li3PO4 crystals precipitated preferentially in the glass containing 3.6-mol% ZrO2, wherein Zr was stable in the network and no precipitation of ZrO2 nanocrystals was observed. Moreover, the separation of phosphate-rich phases in the as-quenched glasses increased with the addition of ZrO2. The findings of the study revealed a dual role of ZrO2. First, ZrO2 acted as a glass network former rather than a nucleation agent, increasing glass viscosity and the nucleation barrier of Li2SiO3 through its strong network connectivity. Second, as Zr preferentially combined with non-bridging oxygen to form Si–O–Zr linkages, a sufficient amount of charge-balancing Li+ ions existed in the network, which promoted the separation of phosphate-rich phases. It indicated that the incorporation of ZrO2 contributes to the activation of the nucleation role of P2O5, thus contributing to the formation of nanocrystals and fine microstructure of GCs.  相似文献   

11.
Fluoride phase separation is the initial stage of nanocrystallization in oxyfluoride glasses, and it is a key step in achieving transparent glass-ceramics with good luminescence. In this work, we combine molecular dynamics (MD) simulations and experimental studies to investigate the phase separation, nanocrystallization and photoluminescence in fluoroaluminosilicate glass and glass-ceramics containing alkali earth fluoride (MF2). The results reveal different phase separation behaviors due to the field strength difference of M2+. The composition and size similarity between the fluoride-rich regions in the MD simulated glass and the fluoride nanocrystals in the experimental prepared glass-ceramics are observed, suggesting that the separated fluoride phase is the structural origin of the observed MF2 nanocrystals. Besides, in order to understand the M2+ dependent glass structural features, the crystallization temperatures, the luminescent properties of Eu3+ and Eu2+ doped glass-ceramics, and the lasing performance of Er3+ doped glass-ceramics are discussed. Based on these comprehensions, some strategies are proposed to help to efficiently design oxyfluoride glass with desired luminescence performance.  相似文献   

12.
《Ceramics International》2023,49(7):10652-10662
Transparent glass-ceramics containing eucryptite and nepheline crystalline phases were prepared from alkali (Li, Na) aluminosilicate glasses with various mole substitutions of Al2O3 for SiO2. The relationships between glass network structure and crystallization behavior of Li2O–Na2O–Al2O3–SiO2 (LNAS) glasses were investigated. It was found that the crystallization of the eucryptite and nepheline in LNAS glasses significantly depended on the concentration of Al2O3. LNAS glasses with the addition of Al2O3 from 16 to 18 mol% exhibited increasing Q4 (mAl) structural units confirmed by NMR and Raman spectroscopy, which promoted the formation of eucryptite and nepheline crystalline phases. With the Al2O3 content increasing to 19–20 mol%, the formation of highly disordered (Li, Na)3PO4 phase which can serve as nucleation sites was inhibited and the crystallization mechanism of glass became surface crystallization. Glass-ceramics containing 18 mol% Al2O3 showed high transparency ~84% at 550 nm. Moreover, the microhardness, elastic modulus and fracture toughness are 8.56 GPa, 95.7 GPa and 0.78 MPa m1/2 respectively. The transparent glass-ceramics with good mechanical properties show high potential in the applications of protective cover of displays.  相似文献   

13.
This study focused on the glass forming, crystallization, and physical properties of ZnO doped MgO-Al2O3-SiO2-B2O3 glass-ceramics. The results show that the glass forming ability enhances first with ZnO increasing from 0 to 0.5 mol%, and then weakens with further addition of ZnO which acted as network modifier. No nucleating agent was used and the crystallization of studied glasses is controlled by a surface crystallization mechanism. The predominant phase in glass-ceramics changed from α-cordierite to spinel/gahnite as ZnO gradually replaced MgO. The phase type did not change; however, the crystallinity and grain size in glass-ceramics increased when the glasses were treated from 1030 °C to 1100 °C. The introduction of ZnO can improve the thermal, mechanical, and dielectric properties of the glass-ceramics. The results reveal a rational mechanism of glass formation, crystal precipitation, and evolution between structure and performance in the xZnO-(20-x)MgO-20Al2O3-57SiO2-3B2O3 (0 ≤ x ≤ 20 mol%) system.  相似文献   

14.
The nepheline-based transparent glass-ceramics are promising candidates for cover glass applications in electronic displays owing to their superior mechanical properties (than glasses) and ability to be chemically strengthened. However, our poor understanding about the kinetic and thermodynamic drivers controlling their crystallization processes usually results in their opacification and development of large internal stresses. The present work focuses on the development of nepheline-based nanocrystalline transparent glass-ceramic designed in the Na2O–Al2O3–SiO2 ternary system nucleated with P2O5. The temporal evolution of the phosphate and nepheline nanocrystal formation has been followed using X-ray diffraction, scanning/transmission electron microscopy, and energy-dispersive spectroscopy. The incorporation of P2O5 in the glass structure leads to the phase separation resulting in the crystallization of nanocrystalline Na3PO4 as an intermediate phase; thus, acting as a nucleating site for volume crystallization of nepheline. The optimization of nucleation and growth profile in the designed composition results in the formation of a transparent glass-ceramic with high optical transmittance (91.5 ± 0.1%).  相似文献   

15.
To obtain an alkali-free glass substrate with enhanced properties for thin-film transistor–liquid crystal displays (TFT–LCDs) applications, we chose a base glass composed of 3B2O3-15Al2O3-58SiO2-22MgO-0.5SrO-1.5MgF2 (mol%) for nucleation–crystallization. The results show that when the nucleation–crystallization processes of the base glass are 810 °C/6 h + 880 °C/6–9 h, the prepared GC/6–GC/9 glass-ceramics exhibit enhanced properties because of the precipitation of nano-sized cordierite. The transmittances in the visible range of the GC/6–GC/9 glass-ceramics exceed 85%, the densities are 2.564–2.567 g/cm3, thermal expansion coefficients are 2.934–3.059 × 10-6/°C (25–300 °C), compressive strengths are 417–589 MPa, bending strengths are 141–259 MPa, Vickers hardnesses are 6.8–7.8 GPa, and strain points are approximately 735 °C. Considering these properties, the prepared GC/6–GC/9 glass-ceramics have good potential as candidate materials for alkali-free glass substrates. Additionally, these results demonstrate that it is feasible to improve the properties of alkali-free glass substrates by nucleation–crystallization.  相似文献   

16.
《Ceramics International》2017,43(13):9769-9777
Glass ceramics based on the system Li2O/Al2O3/SiO2 (LAS) often show a coefficient of thermal expansion close to zero. Although these glass-ceramics are of high economic importance, the fundamentals of the crystallization process are still not fully understood. In this paper, the effect of ZrO2 addition as a sole nucleation agent on the crystallization of the LAS glass is described predominantly using transmission electron microscopy and X-ray diffraction. The composition of the studied green glass was close to that of the commercially available Robax™ glass (Schott AG), which, however, contained both, ZrO2 and TiO2 as nucleating agents. It was found that during thermal treatment, in a first step, already at temperatures around 10–20 K below the glass transition temperature, Tg, ZrO2 nanocrystals with sizes in the range from 5 to 15 nm were precipitated. The next crystalline phase that forms during the crystallization process was LAS with a structure similar to the hexagonal high temperature phase of quartz. These crystals were much larger than the ZrO2 crystals. If thermal treatment was carried out at higher temperatures, a dense network of LAS crystals was formed. Differently shaped crystals in samples with different thermal history were visualized, and an enrichment of Ba and Sb in the residual glass phase in the late stages of thermal treatment was found. Also, an enrichment of aluminum around the ZrO2 crystals was evident, which is a hint at a preceding droplet phase separation from which the ZrO2 crystals were precipitated. The crystallization is notably different from that of mixed ZrO2/TiO2 nucleating agents used in commercial lithium alumosilicate glass ceramics.  相似文献   

17.
The physicochemical features of the phase formation upon crystallization of monolithic glasses of the strontium diborate stoichiometric composition are investigated. It is demonstrated that the first phase crystallizing on the surface of the SrO · 2B2O3 glass is the strontium borate Sr4B14O25, which plays the role of a precursor for the subsequent crystallization of the SrB4O7 borate. The temperature corresponding to the maximum crystal nucleation rate on the surface and the time of complete “operation” of nuclei are determined using differential thermal analysis. The optical glass-ceramics prepared by the two-stage crystallization are surface-crystallized glasses in which the filling density of the surface is approximately equal to 30% and the content of the main phase SrB4O7 is as high as ∼ 70%. No second harmonic generation of neodymium laser radiation in the glass-ceramics is observed because of both the absence of the preferred orientation of SrB4O7 nonlinear optical crystals and the small crystal sizes (considerably smaller than the coherence length of the SrB4O7 crystal) in the direction perpendicular to the glass surface.  相似文献   

18.
Cordierite glass-ceramics usually begin to crystallize from the surface. As an efficient nucleating agent, TiO2 can promote the rapid transformation of glass to bulk crystallization, but it is easy to cause the increase of dielectric constant and light absorption. High crystallinity cordierite glass-ceramics were prepared by optimizing the heat treatment process without or with different nucleating agents in stoichiometric cordierite glasses. The results show that the crystallization mechanisms of glasses without and with ZrO2+P2O5 as nucleation agents are controlled by surface crystallization. While, the glass with TiO2+ZrO2+P2O5 as nucleation agents have the tendency to be bulk crystallization. The studied glasses are crystallized from surface and have different crystallization orientations with the inner glass. The thickness of crystalline layer increased with the increasing of heating temperatures, but the “surface-center” crystallization process cannot complete by further increasing heating temperatures because of softening deformation of glasses. At 1020 ℃, the glasses complete the “surface-center” crystallization for long durations. The glasses without nucleation agents and with ZrO2+P2O5 require 10 h, but the glass with TiO2+ZrO2+P2O5 complete for 5 h. Although all the three glasses complete the “surface-center” crystallization, the glasses with nucleation agents show the higher crystallinity upon the same heat treatments. Finally, glass-ceramics with excellent performance were obtained, for example, the Z1# glass-ceramic have the high microhardness ∼7.4 GPa, low thermal expansion coefficient ∼1.4☓10−6−1 at 20–300 ℃, and relatively high thermal conductivity ∼2.4 W/mK. It also exhibits low dielectric constant and loss, which was ∼4.5 and ∼1.2☓10−3 at 1 MHz, ∼ 4.9 and 2.3☓10−3 at 10.5 GHz..  相似文献   

19.
The microstructural development during crystallization firing of a commercially-available dental-grade nanostructured lithia-zirconia glass-ceramic (Vita Suprinity® PC) was unraveled using a wide battery of ex-situ and in-situ characterization techniques. It was found that the milling blocks are slightly crystallized glass-ceramics, with a complex chemical composition and consisting of partially de-polymerized glass plus lithium silicate (Li2SiO3) nanocrystals. It was also found that during crystallization firing the glassy matrix first reacts with part of the Li2SiO3 to form lithium disilicate (Li2Si2O5) at ~810?820 °C, and then lithium orthophosphate (Li3PO4) precipitates from the glass. This results in glass-ceramics with abundant nanocrystals embedded in a sparse zirconosilicate glass matrix (containing many other cations subsumed) that, due to its high viscosity, inhibited crystal growth. Therefore, these dental glass-ceramics are not reinforced with zirconia (ZrO2) crystals unless over-fired above ~890 °C and at the expense of its singular nanostructure. Finally, this study opens doors for optimizing the clinical performance of these dental glass-ceramics via microstructural tailoring.  相似文献   

20.
In a MgO/Al2O3/SiO2/ZrO2 glass-ceramic MgO was substituted by equimolar ZnO concentrations. The effect of this substitution on the crystallization behavior, the microstructure and the mechanical properties of the glass-ceramics was studied. The crystal phases and the microstructure were analysed by X-ray diffraction and scanning electron microscopy. Tetragonal ZrO2, a high-/low-quartz solid solution (high-/low-QSS) and spinel/gahnite were observed in the entire bulk of the glass-ceramics. Additionally, indialite or cristobalite are detected at the surface of some glass-ceramics. The substitution of small ZnO concentrations induces an increasing low-QSS concentration and hence higher microhardness and Young’s modulus. By contrast, higher ZnO concentrations lead to a liquid/liquid phase separation in the glass. Moreover, spinel/gahnite is the main crystal phase and the concentration of the low-QSS is smaller in theses glass-ceramics which also do not show as good mechanical properties. However, the biaxial flexural strength of the glass-ceramics is not notably affected by the ZnO concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号