首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Both high strain and low driving electric-field are important characteristics of the piezoelectric actuators for industrial applications, but they are difficult to achieve together in a single material system. In this work, the layered and inlay-onlay structures of relaxor/ferroelectric composites were prepared by selecting relaxor phase (0.94Bi0.5(Na0.82K0.18)0.5TiO3-0.06NaNbO3, BNKT-6NN) and ferroelectric phase (0.9Bi0.5Na0.5TiO3-0.1Bi0.2Sr0.7TiO3, BNT-10BST) with the volume ratio of 1:1. By comparing the field-induced strains under same electric-field, the S33 of the BNKT-6NN/BNT-10BST layered composites (0.17%) was greater than that of the inlay-onlay composites (0.08%) and exhibited excellent temperature stability. The superiority in field-induced strain for the layered composite ceramic was originated from the inhomogeneous distribution of internal electric-field between relaxor and ferroelectric phase and thereby could modulate the polar nanoregions to ferroelectric phase transition. In addition, the restricted phase boundary between relaxor and ferroelectric phase enhanced the potential barrier energy (Ea = 1.47 eV) and hindered the jump of defective ions (mainly oxygen vacancies) of the BNKT-6NN/BNT-10BST layered composites. The outstanding electrical properties of layered composite ceramics provide a new idea for further improving field-induced strain performance.  相似文献   

2.
Ternary solid solutions of (1 ? x)(0.8Bi0.5Na0.5TiO3–0.2Bi0.5K0.5TiO3)– xNaNbO3 (BNKT–xNN) lead‐free piezoceramics were fabricated using a conventional solid‐state reaction method. Pure BNKT composition exhibited an electric‐field‐induced irreversible structural transition from pseudocubic to ferroelectric rhombohedral phase at room temperature. Accompanied with the ferroelectric‐to‐relaxor temperature TF‐R shifted down below room temperature as the substitution of NN, a compositionally induced nonergodic‐to‐ergodic relaxor transition was presented, which featured the pinched‐shape polarization and sprout‐shape strain hysteresis loops. A strain value of ~0.445% (under a driving field of 55 kV/cm) with large normalized strain of ~810 pm/V was obtained for the composition of BNKT–0.04NN, and the large strain was attributed to the reversible electric‐field‐induced transition between ergodic relaxor and ferroelectric phase.  相似文献   

3.
Bismuth sodium titanate (BNT)-based lead-free ceramics have attracted a great deal of attention due to their large electrostrains. In this work, a remarkably symmetric strain of 0.7% together with excellent temperature (0.5–0.7% from 25 to 100 °C)/frequency (ΔS<4% from 1 to 20 Hz) stability was observed in the 0.91(Bi0.5Na0.5)TiO3-0.06BaTiO3-0.03NaNbO3 (BNT-6BT-3NN) AFE P4bm ceramic through constructing R3c/P4mm/P4bm triple-phase coexistence phase boundary. Compared with other two compositions near double-phase coexistence ferroelectric (FE)-antiferroelectric (AFE) phase boundaries, the BNT-6BT-3NN ceramic exhibits a unique field-induced multiple phase transition from the initial AFE P4bm phase to the metastable FE P4mm phase and finally into the FE R3c phase. In-situ structural analysis evidenced a significantly enhanced lattice strain but a comparable strain value from domain switching in BNT-6BT-3NN compared with other compositions. The present study provides a novel strategy for designing high-performance large-strain ceramics in BNT-based relaxor AFE systems.  相似文献   

4.
SrTiO3-modified lead-free piezoelectric ceramics, (0.93-x)Bi0.5Na0.5TiO3-xSrTiO3-0.06BaTiO3-0.01 K0.5Na0.5NbO3 [(BNT-xST)-BT-KNN, x = 0-0.06], were prepared using a conventional solid-state reaction method. The XRD structure analysis and electric properties characteristics revealed the ST-induced phase transformation from the ferroelectric phase to the relaxor phase and their coexistence state. Benefiting from the ST-destructed ferroelectric long-range orders, the high normalized strain value of 600 pm/V was obtained in the (BNT-0.02ST)-BT-KNN ceramic at 5 kV/mm. The ST-generated relaxor phase was found to have a constructive effect on improving the temperature stability and restraining the hysteresis of the electric-field-induced strain. The normalized strain of (BNT-0.06ST)-BT-KNN ceramics could be kept at a high value ~337 pm/V at elevated temperature up to 120°C.  相似文献   

5.
The analysis of the functional properties (ferroelectric, dielectric, and piezoelectric) of chemical solution deposited thin films of the lead‐free (Bi0.5Na0.5)1?xBaxTiO3 (BNBT) solid solution prepared from solution precursors with and without Na+ and Bi3+ excesses has been performed in this work. At room temperature a nonergodic relaxor ferroelectric state has been found. The switched polarization of the films is not stable at room temperature, poor remnant polarization, associated with an enhancement of the induced domains randomization produced by the films constraints. The depolarization temperature for the switched polarization allowed us to build up a tentative phase diagram for these BNBT films. Both the better functional properties and the agreement of the depolarization temperature with the freezing temperature of the relaxor Volger–Fulcher behavior permit to locate the center of the morphotropic phase boundary region close to x = 0.055 in the stoichiometric films and x = 0.10 for the films with Na+ and Bi3+ excesses. Based on these results, the possible applications of these films are discussed.  相似文献   

6.
Bi0.5Na0.5TiO3-based lead-free piezoceramics with large strain output are of great importance in the application of piezoelectric actuators. AgNbO3-modified 0.76Bi0.5Na0.5TiO3-0.24SrTiO3 (BNT-24ST) lead-free piezoceramics were synthesized by conventional solid-state reaction method. The effects of AgNbO3 on the structures, dielectric, ferroelectric and piezoelectric properties were carefully investigated. A large electrostrain and normalized strain (d33* = Smax/Emax) of 0.27% and 700?pm/V, were obtained respectively at low electric field (40?kV/cm) for 1?mol.% AgNbO3-doped BNT-24ST. AgNbO3 doping modified the phase composition which contained moderate amounts of tetragonal and rhombohedral phase by shifting its TF-R to below room temperature. Moreover, the reversible field-induced phase transition between relaxor and ferroelectric made contributions to its large strain related properties. This work has confirmed that the actuating performance of BNT-ST-based piezoceramics can be further improved by an easy and cost-effective composition engineering method and showed it a promising candidate for lead-free actuator material.  相似文献   

7.
《Ceramics International》2022,48(10):14301-14306
Recently, the progress of electronic devices toward miniaturization has strongly promoted development of multifunctional materials possessing multiple desirable properties. In this study, we develop and fabricate 0.93Bi0.5Na0.5TiO3-0.07BaTiO3-xEr multifunctional ceramics which show simultaneously considerable electric-field-induced strain and bright green light emission properties. With the introduction of Er3+, the ceramics gradually transform from non-ergodic relaxor phase to ergodic relaxor phase which could reversibly transform to ferroelectric phase under the electric field. As a result, with improving Er3+ content, the shape of the polarization-electric field loops of the ceramics become pinched, and it is obvious that the negative strain disappears while the positive strain gradually increases and reaches a maximum value 0.46% at x = 1.2 mol%. Besides, After the ceramics are poled, the light emission peak are greatly enhanced attributed to the decreased crystal symmetry and increased domain size, and is the strongest at x = 1.2 mol%. These results indicate that 0.93Bi0.5Na0.5TiO3-0.07BaTiO3-xEr ceramics are good candidates for developing multifunctional optoelectronic devices.  相似文献   

8.
Apart from discharge energy density (Wr) and discharging time (t0.9), thermal stability and anti-fatigue for charge-discharge performance are also the important performance indexes for dielectric pulsed capacitor. Na0.5Bi0.5TiO3 based ceramics are usually accompanied by huge electric field-induced strain when appling electric field, resulting in the fatigue phenomenon and thermal accumulation effect in the cycling process. In this work, Na0.5Bi0.5TiO3-xNaNbO3 (NBT-xNN) ferroelectric relaxor ceramic has been prepared by the solid state reaction process. The effect of NaNbO3 content on microstructures, impedance spectroscopy, electric-field-induced strain and charge-discharge performance of NBT-xNN ceramics have been investigated systematically. Results indicate the proper percent of NaNbO3 could favor the formation of polar nanoregions (PNRs), which leads to the diffusion of phase transition and the diminution of electromechanical strain. Therefore, the high thermal stability and anti-fatigue for charge-discharge property has been achieved in NBT-xNN ceramics. An enhanced discharging energy density of 2.44 J cm?3 along with discharge time of 0.31 μs could be obtained in the NBT-xNN with x = 0.3, and a very stable discharge energy density of 2.06 J cm?3 concomitantly with discharge time less than 0.37 μs could be gained in a wide temperature range of 20–150 °C with a fluctuation of ±4% after 104 charge/discharge cycles. This work would contribute to the development of charge-discharge system, especially dielectric capacitor, for green pulsed power devices.  相似文献   

9.
《Ceramics International》2021,47(21):30399-30405
In this work, (0.64-x)Bi0.5Na0.5TiO3- 0.36Sr0.7Bi0.2TiO3- x(K0.5La0.5)(Ti0.9Zr0.1)O3 lead-free piezoceramics were designed and fabricated by a conventional solid-phase sintering process. It is found that large strains (0.33 %), low hysteresis coefficients (32 %), and large dynamic d33* (367 p.m./V) were obtained at x = 0.01. The large strain originates from the reversible transition of the relaxor to the long-range ferroelectric order in the electric field. When the ferroelectric and relaxor phases coexist in a proper ratio, they can provide a favorable condition for the easier movement of the domains and improve the strain properties. In addition, after 105 cycles, the bipolar strain loop of x = 0.01 content changed slightly, demonstrating excellent fatigue resistance. This work provides a new way to design piezoelectric ceramics with large strain and low hysteresis.  相似文献   

10.
《Ceramics International》2019,45(6):7173-7179
The large electric-field-induced strain of Bi0.5Na0.5TiO3-BaTiO3 based ceramic make it a potential replacement for lead-based ferroelectrics in actuator applications. Herein, a ternary system (1-x)(Bi0.5Na0.5)0.935Ba0.065TiO3-xSr2MnSbO6 (BNBT6.5-xSMS) ceramic was fabricated using conventional solid-state reaction. It was found that the ferroelectric to relaxor phase transition temperature TF-R gradually shifted to lower temperature by increasing SMS contents. The ferroelectricity and piezoelectricity of BNBT6.5 were highly affected by trace amount of SMS doping. For composition BNBT6.5-0.003SMS, where TF-R was near room temperature, a large electric-field-induced unipolar strain of ~0.4% with high normalized strain (Smax/Emax) of 728 pm/V, which is comparable to lead-based ferroelectric/antiferroelectric ceramics, was achieved owing to the reversible electric-field-induced phase transition between a non-polar relaxor phase to a polar phase with long-range ferroelectric order.  相似文献   

11.
《Ceramics International》2020,46(13):21211-21215
A ternary solid solution of Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3–Bi(Mg2/3Ta1/3)O3 (BNKT-xBMT) lead-free electroceramics was synthesized by a solid-state reactive sintering technique. The electrostrain, dielectric, and ferroelectric properties as well as the impedance characteristics and the microstructure were systematically assessed. With the increase of BMT, the BNKT-xBMT ceramics gradually transformed from non-ergodic relaxor phase to ergodic relaxor phase, manifested as the ferroelectric-to-relaxor temperature (TF-R) shifts towards below room temperature. Additionally, the ferroelectric hysteresis curves became pinched, and the strain curve changed from butterfly-shaped into sprout-shaped. At the ergodic relaxor composition of x = 0.04, a large electrostrain value (S = 0.4%; under an electric field of 60 kV/cm, d33* = 632 pm/V) was achieved, which is mainly attributed to the electric-field-induced transition from the ergodic relaxor phase to the ferroelectric phase.  相似文献   

12.
The phase diagram of (1 ? x)(Bi0.5Na0.5)TiO3xSrTiO3 was completed and investigations on polarization and strain in this system were carried out. (1 ? x)(Bi0.5Na0.5)TiO3xSrTiO3-ceramics were prepared by conventional mixed oxide processing. The depolarization temperature (Td), the temperature of the rhombohedral–tetragonal phase transition (Tr–t) and the Curie temperature (Tm) were determined by measuring the temperature dependence of the relative permittivity. All solid solutions of (1 ? x)(Bi0.5Na0.5)TiO3xSrTiO3 show relaxor behavior (A-site relaxor). From XRD-measurements a broad maximum of the lattice parameter can be observed around x = 0.5 but no structural evidence for a morphotropic phase boundary was found. SEM-analysis revealed a decrease of the grain size for increasing SrTiO3-content. At room temperature a maximum of strain of about 0.29% was found at x = 0.25 which coincides with a transition from a ferroelectric to an antiferroelectric phase. The temperature dependence of the displacement indicates an additional contribution from a structural transition (rhombohedral–tetragonal), which would be of certain relevance for the existence of a morphotropic phase boundary.  相似文献   

13.
The drastic reduction in dimensions in thin films, together with the low crystallization temperatures used, normally results in a large reduction in the grain size. It has been reported that relaxor ferroelectric states are stabilized at room temperature for fine-grained ceramics and films that behave as normal ferroelectrics for large grains. In this work, the effects of the grain size reduction on the relaxor characteristics are analyzed for a composition that is already a canonical relaxor with a nonergodic state at room temperature: (Bi0.5Na0.5)1-xBaxTiO3 (BNBT). The comparison of the local polar ordering within BNBT grains studied with piezoresponse force microscopy on large-grained ceramics and fine-grained thin films shows that the development of stable long-range ferroelectric order with the application of an electric field is hampered due to the small grain size of the grains. The ergodic character of the high-temperature phase is thus stabilized at room temperature, following a similar mechanism as the one discussed for other noncanonical relaxors.  相似文献   

14.
《Ceramics International》2023,49(6):9615-9621
Bi0.5Na0.5TiO3 (BNT) lead-free ceramics have been extensively studied due to their excellent dielectric, piezoelectric and ferroelectric properties. The phase structure and functionalities of BNT can be feasibly adjusted by doping/forming solid solutions with other elements/components. In this work, Bi(Mg2/3Nb1/3)O3 (BMN) was introduced into BNT by a conventional solid-state reaction to form a homogeneous solid solution of (1-x)(Bi0.5Na0.5)TiO3-xBi(Mg2/3Nb1/3)O3 (BNT-xBMN) with a perovskite structure. With the increase of BMN content, a phase transition from rhombohedral R3c to tetragonal P4bm has been confirmed by XRD, along with shifting the ferroelectric-paraelectric phase transition temperature to lower temperatures with broadening dielectric peaks. Furthermore, an optimized recoverable energy density of 1.405 J/cm3 was achieved for BNT-0.10BMN ceramics under a low applied electric field of 140 kV/cm, which is mainly attributed to the transformation from ferroelectric to ergodic relaxor phase.  相似文献   

15.
《Ceramics International》2019,45(13):16022-16027
0.8(Bi0.5,Na0.5)TiO3-0.2SrTiO3 (BNT-0.2ST) thin films, with thicknesses ranging from 90 to 364 nm, were fabricated on platinized silicon substrates by sol-gel method. These films were investigated by switching spectroscopy piezoresponse force microscope (SS-PFM) as a function of frequency at room temperature, revealing the enhanced ferroelectric response in ∼ 210 nm film at all frequencies (0.1 Hz - 1.5 Hz). This enhancement was ascribed to the largest thermally-activated stress at such thicknesses generated during film fabrications. As the temperature of the investigated films increases from room temperature to 200 oC, the piezoelectric parameters were obtained from SS-PFM, such as switching polarization (Rs), coercive bias (V0), work of switching (As), maximum strain (Smax), and negative strain (Sneg), indicating an occurrence of phase transition from ferroelectrics to relaxors. This work revealed that thickness plays a crucial role for ferroelectric response and temperature-dependent phase transition in BNT-0.2ST films, since it affects the stress state and switching behavior.  相似文献   

16.
In this work, the (1-x)(0.8Na0.5Bi0.5TiO3-0.2K0.5Bi0.5TiO3)-xSrTiO3 (NKBT-xST) incipient piezoelectric ceramics with x = 0–0.07 (0ST-7ST) were prepared by the solid-state reaction method and their structural transformation and electromechanical properties were investigated as a function of ST content. As the ST content increases, the long-range ferroelectric order is disrupted, and the ferroelectric-relaxor phase transition temperature (TFR) shifts to around room temperature for NKBT-5ST ceramics, accompanied by a relatively high electrostrain of 0.3% at 6 kV/mm. The large strain response associated with the vanished ferroelectric properties around TFR can be attributed to the reversible relaxor-ferroelectric phase transition. The electric-field-temperature (E-T) phase diagrams were established, and the transition between the two field-induced long-range ferroelectric states were found to take place via a two-step switching process through an intermediate relaxor state. The threshold electric field to trigger the conversion between ferroelectric state and relaxor state depends strongly on the dynamics of polarization relaxation, which is influenced by temperature and composition.  相似文献   

17.
The effects of BiMeO3 (Me = Fe, Sc, Mn, Al) addition on the phase transition and electrical properties of Bi0.5(Na0.80K0.20)0.5TiO3 (BNKT20) lead‐free piezoceramics were systematically investigated. Results showed that addition of BiFeO3 into BNKT20 induces a phase transition from tetragonal–rhombohedral coexisted phases to a tetragonal phase with the observation of enhanced piezoelectric properties (d33 = 150 pC/N for 0.02BiFeO3). BiScO3, BiMnO3, and BiAlO3 substitutions into BNKT20 induce a phase transition from coexistence of ferroelectric tetragonal and rhombohedral to a relaxor pseudocubic with a significant disruption of the long‐range ferroelectric order, and correspondingly adjusts the ferroelectric–relaxor transition point TF–R to room temperature. Accordingly, large accompanying normalized strains of 0.34%–0.36% are obtained near the ferroelectric–relaxor phase boundary, and the mergence of large strain response can be ascribed to a reversible field‐induced ergodic relaxor‐to‐ferroelectric phase transformation. Moreover, our study also revealed that the composition located at the ferroelectric–relaxor phase boundary where the strain response is consistently derivable shifts to a BNKT20‐rich composition as the tolerance factor t of the end‐member BiMeO3 increases, and this relationship is expected to provide a guideline for designing high‐performance (Bi0.5Na0.5)TiO3‐based materials by searching the ferroelectric–relaxor phase boundary.  相似文献   

18.
A series of lead-free (Bi0.5Na0.5)0.94Ba0.06Ti1-x(Y0.5Nb0.5)xO3 (for 0 ≤ x ≤ 0.03) perovskite ceramics were fabricated using a solid-state reaction technique. The effects of (Y0.5Nb0.5)4+ ions doping on phase structure, piezoelectric properties, AC impedance, and fatigue resistance were systematically studied. Crystal structure as a function of the composition revealed a single perovskite lattice structure with dense micromorphology. The transition temperature of the non-ergodic and ergodic relaxor ferroelectric phase shifted to near ambient temperature with increasing composition, which was related to the destruction of the long-range ordered ferroelectric domains. Hence, the transformation of ferroelectric-to-relaxor phase was easier under applied electric field at room temperature. The ceramic for x = 0.01 composition attained a large unipolar strain of ~ 0.452% with a corresponding normalized strain (d33*) of ~ 603 pm/V under applied 75 kV/cm field. Besides, the excellent fatigue resistance of the sample was obtained after 105 switching cycles under 70 kV/cm. These phenomena demonstrated that (Bi0.5Na0.5)0.94Ba0.06Ti1-x(Y0.5Nb0.5)xO3 ceramics might be suitable for a wide range of electronic equipment applications such as actuators and sensors.  相似文献   

19.
Dielectric ceramics with both excellent energy storage and optical transmittance have attracted much attention in recent years. However, the transparent Pb-free energy-storage ceramics were rare reported. In this work, we prepared transparent relaxor ferroelectric ceramics (1 − x)Bi0.5Na0.5TiO3xNaNbO3 (BNT–xNN) by conventional solid-state reaction method. We find the NN-doping can enhance the polarization and breakdown strength of BNT by suppressing the grain growth and restrained the reduction of Ti4+ to Ti3+. As a result, a high recoverable energy-storage density of 5.14 J/cm3 and its energy efficiency of 79.65% are achieved in BNT–0.5NN ceramic at 286 kV/cm. Furthermore, NN-doping can promote the densification to improve the optical transmittance of BNT, rising from ∼26% (x = 0.2) to ∼32% (x = 0.5) in the visible light region. These characteristics demonstrate the potential application of BNT–xNN as transparent energy-storage dielectric ceramics.  相似文献   

20.
The microstructure, phase structure, ferroelectric, and dielectric properties of (1?x)Bi0.5Na0.5TiO3xNaNbO3 [(1?x)BNT‐xNN] ceramics conventionally sintered in the temperature range of 1080°C–1120°C were investigated as a candidate for capacitor dielectrics with wide temperature stability. Perovskite phase with no secondary impurity was observed by XRD measurement. With increasing NN content, (1?x)BNT‐xNN was found to gradually transform from ferroelectric (x = 0–0.05) to relaxor (x = 0.10–0.20) and then to paraelectric state (x = 0.25–0.35) at room temperature, indicated by PIE loops analysis, associated with greatly enhanced dielectric temperature stability. For the samples with x = 0.25–0.35, the temperature coefficient of capacitance (TCC) was found <11% in an ultra‐wide temperature range of ?60°C–400°C with moderate dielectric constant and low dielectric loss, promising for temperature stable capacitor applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号