首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2020,46(13):20633-20639
A reliable method for fabricating soda lime glass-ceramics by selective laser sintering was demonstrated. The effect of the ratio of glass powder to epoxy resin and sintering process on the properties and microstructure of glass-ceramics was investigated. Research shows that: with the improvement of glass powder proportion, sintering shrinkage rate declined and mechanical strength could be improved gradually. When the mass ratio of glass powder and epoxy resin powder was 18:1 and heat-holding at 740 °C for 3 h, the shrinkage rate of the sample was 21.11% and the bending strength reached 95.45 MPa. Therefore, this research laid a foundation for 3D printing to fabricate high performance and complex structure glass-ceramics.  相似文献   

2.
Herein, alumina green bodies are fabricated by three dimensional (3D) printing technology, then, the influence of debinding holding time under vacuum and argon on mechanical properties is systematically investigated by comparing the changes in microstructure, bulk density, open porosity, grain connection situation and flexural strength of ceramics. The flexural strength of alumina ceramics acquired the maximum values of 26.4 ± 0.7 MPa and 25.1 ± 0.5 MPa after debinding under vacuum and argon for 120 min and 180 min, respectively. However, the alumina ceramics rendered the flexural strength of 19.4 ± 0.6 MPa and 9.5 ± 0.4 MPa under vacuum and argon without extended holding time, respectively. The relatively low mechanical properties can be mainly attributed to the weak interlayer binding force, which is caused by layer-by-layer forming mode during 3D printing process and anisotropic shrinkage during the sintering process. Moreover, the alumina ceramics exhibited moderate bulk density and open porosity of 2.4 g/cm3 and 42% after the sintering process, respectively, which are mainly influenced by the microstructural evolution of alumina ceramics during thermal treatment. Also, the diffusion of gases is achieved by curing of photosensitive resin and influenced by different holding times during debinding, affecting the mechanical properties of sintered ceramics. The mechanical properties of as-sintered ceramics are suitable for the utilization of ceramic cores in the manufacturing of hollow blades.  相似文献   

3.
《Ceramics International》2022,48(6):7677-7686
The composition of lithium aluminosilicate (LAS) with different zinc oxide-magnesium oxide (ZnO–MgO) contents that ranged from 0 to 1.45 wt percent (wt%) was investigated to determine the thermal shock resistance properties of the glass-ceramics. The LAS glasses were melted in an alumina crucible at 1550 °C for 5 h, and the green compact samples were then heat-treated at 1100 °C for 3.5 h. The presence of zinc oxide (ZnO) in the compositions did not change the major crystal phase of β-spodumene. However, the addition of ZnO shifted the pronounced peak to a lower angle and increased the percentage of crystallinity from 55% to 59%. Additionally, the function of ZnO in LAS glass-ceramics as the network modifier was confirmed through Fourier Transform Infrared Spectroscopy (FTIR) analysis. The physio-mechanical properties were improved when 1.45 wt% ZnO was added to the LAS glass-ceramics. The results showed increased density (2.42 g/cm3), low porosity (0.85%), high flexural strength (125.23 MPa), and low coefficient of thermal expansion (25–800 °C) (CTE(25–800 °C)) value of 1.73 × 10?6 °C?1. Meanwhile, the thermal shock resistance properties evaluation of the LAS glass-ceramics at different ZnO contents were conducted at different thermal shock temperatures of 200 °C, 500 °C, and 800 °C. The critical temperature of the LAS specimens with 1.45 wt% ZnO demonstrated the ability to withstand a thermal shock at 800 °C while preserving 87% of their initial strength of 108.40 MPa, exemplifying the best LAS glass-ceramics properties for rapid high-temperature change applications.  相似文献   

4.
The K+-Na+ ion exchange was used to strengthen LAS glass-ceramic materials prepared by hot-pressing sintering. The microstructure, cytocompatibility, and chemical durability of the chemically strengthened LAS glass-ceramics were characterized. The XRD results showed that the K+-Na+ ion exchange mainly occurred between the glass phase of the LAS glass-ceramics and molten salt baths. The ion-exchange process was mainly responsible for the improved chemical durability of the LAS glass-ceramics. The dissolution in acetic acid was significantly reduced from 72 to 15 μg·cm?2 after the ion-exchange treatment, which was attributed to residual compressive stress and increased contents of Q3 and Q4 structural units in the surface region of the LAS glass-ceramics. In addition, the chemically strengthened LAS glass-ceramic samples exhibited good biocompatibility determined by the CCK-8 process using the L929 cell line, having a promising potential as dental restorative materials.  相似文献   

5.
3D ink printing (3DIP) technology can accurately control the macroscopic size and microstructure of bioceramic scaffolds. However, nonceramic components in the printing ink used in 3DIP severely affect densification, resulting in less desirable mechanical properties of the scaffolds. In this study, a strategy of sintering assisted by a sintering aid (sodium carbonate) was used to prepare calcium silicate (CSi) scaffolds with high strength. The addition of 1% sintering aid to a CSi scaffold sintered at 1100 °C led to an appreciable compressive strength (47.8 MPa) and high elastic modulus (1847 MPa). Moreover, the CSi scaffolds with sintering aids showed better degradation ability and mineralization ability than the CSi scaffolds without sintering aids. It is expected that the method involving strengthening with sintering aids will promote the application of 3DIP bioceramic scaffolds in the repair of bone defects.  相似文献   

6.
《Ceramics International》2022,48(15):21355-21361
In this study, a transparent and environmentally friendly Li2O–Al2O3–SiO2 (LAS) glass-ceramic was prepared by melt-quenching and two-step heat treatment. The influence of the substitution amount of ZrO2 by SnO2 on the crystallization, microstructure, transparency, and mechanical properties of LAS glass and glass-ceramics was investigated by means of differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Ultraviolet–visible Spectrophotometer, three-point bending strength test, and microhardness test. The results indicate that the main crystalline phase of LAS glass ceramics was a β-quartz solid solution when heat treated at 780 °C for 2 h and 870 °C for 1.5 h. When the substitution amount of ZrO2–SnO2 increased from 0.4 mol% to 2.5 mol%, the grain size and thermal expansion coefficient of LAS glass-ceramics first decreased and then increased, and the crystallinity first increased and then decreased. When the substitution amount of ZrO2–SnO2 was 0.8 mol%, the transparency of the LAS glass-ceramics was maximum, the bending strength was 96 MPa, and the Vickers hardness was 10.9 GPa.  相似文献   

7.
Nanocrystalline mullite glass-ceramics have been regarded as an ideal optical window material due to its excellent thermal shock resistance, low dielectric constant, and perfect high-temperature strength. However, the fabrication of high-purity mullite glass-ceramics at a low temperature still faces great challenges. Herein, highly transparent mullite glass-ceramics have been prepared at an ultra-low temperature (~800°C) via the spark plasma sintering (SPS) of EMT-type zeolite. Unlike the mullite glass-ceramics made by the conventional sintering process, the one obtained in this study present high transparency both in the visible and infrared regions. The sintering activity and linear thermal shrinkage behavior of sample during the SPS process has been thoroughly investigated. Benefitted from the existence of ultra-small mullite nanocrystals, the derived glass-ceramics g-950 possess a high Vickers hardness (7.0 GPa), Young's modulus (86.6 GPa), and MSP strength (123.2 MPa), which show more excellent mechanical properties than conventional aluminasilicate or silica glass.  相似文献   

8.
《Ceramics International》2023,49(1):216-225
In order to obtain lithium disilicate glass-ceramics for dental restoration with both high strength and high translucency, lithium disilicate glass-ceramics with different MgO contents were prepared by melt-casting and heat treatment method. The effects of MgO content on the crystallization temperature, microstructure and flexural strength of lithium disilicate glass-ceramics were investigated. The results indicate that Mg2+ exists in the form of [MgO4] in the network of lithium disilicate glass-ceramics when the MgO content is 0.56 mol% (M0.56), which is beneficial to increasing the homogeneity and thermal stability of the glass system, and short rod-like lithium disilicate crystals can be formed after heat treatment at 840°C. Thus, the obtained lithium disilicate glass-ceramics exhibit excellent comprehensive performance, with the flexural strength being 312 ± 23 MPa, and the average transmittance of visible light being 37.3% (d = 1.62 mm). Especially, the glass-ceramic sample shows better translucency than the commercially available products. The research results are of great significance for developing high performance lithium disilicate glass ceramics and promoting its broad application in the field of dental restoration.  相似文献   

9.
《Ceramics International》2021,47(23):32837-32846
Performance degradation always occurs in carbon fibers/carbon nanotubes (CFs/CNTs) multi-scale reinforced composites prepared by chemical vapor deposition (CVD) method. In this study, pyrolytic carbon (PyC) interlayers are introduced to overcome this problem, and the mechanism is studied in detail. The multi-scale reinforcements are combined with lithium aluminosilicate (LAS) glass-ceramic into ceramic matrix composites by slurry impregnation and hot pressing sintering. The results show that the PyC interlayers can protect the CFs from corrosion of the catalyst at high temperature, improve stress transfers and promote the synergy between various components. The CNTs and LAS matrix form a transition area, which causes deflection and shunting when cracks propagate. These factors have greatly increased the crack extension energy, so the mechanical properties have been greatly improved. The flexural strength, fracture toughness and work of fracture reach 602 ± 55 MPa, 10.7 ± 2 MPa m1/2, 4.6 ± 0.7 kJ m−2, respectively, which are 42.3%, 42.6% and 76.9% higher than CF/LAS. This work expands the study of the CFs/CNTs multi-scale reinforcements and the LAS composites, and provides a useful reference for the related research.  相似文献   

10.
《Ceramics International》2021,47(19):26891-26897
KLS-1 Lunar regolith simulant was microwave sintered to explore its potential applicability in future lunar construction. The effects of sintering temperature on linear shrinkage, density, porosity, and microstructural, mechanical, and thermal properties were investigated. As the sintering temperature increased, linear shrinkage and density increased and porosity decreased. Structural evolution in the sintered samples was characterized by scanning electron microscopy and X-ray diffraction. Unconfined compressive strength testing showed that mechanical strength increased significantly with increasing sintering temperature, with 1120 °C giving the highest strength of 37.0 ± 4.8 MPa. The sintered samples exhibited a coefficient of thermal expansion of approximately 5 × 10−6 °C−1, which was well-maintained even after cyclic temperature stress between −100 and 200 °C. Therefore, this microwave processing appears promising for the fabrication of building material with sufficient mechanical strength and thermal durability for lunar construction.  相似文献   

11.
《Ceramics International》2020,46(4):4771-4777
The Li–Al–Si glass-ceramics were prepared by conventional glass-ceramic fabrication method. The influences of Na2O content on the sintering property, microstructure, and coefficient of thermal expansion were investigated. The results show that the coefficient of thermal expansion of LAS glass-ceramics can be tailored to match that of silicon by the addition of Na2O content. Na2O has a remarkable influence on the crystallinity of Li–Al–Si glass-ceramic. The coefficient of thermal expansion of Li–Al–Si glass-ceramic is thus tunable between that of glass phase and crystal phase. The Si–O bond length change in stretch vibration modes introduced by Na2O also contributes to the variation of coefficient of thermal expansion of the Li–Al–Si glass-ceramics. The coefficient of thermal expansion of the Li–Al–Si glass-ceramic with 1.5 wt% Na2O addition is about +3.34 ppm/°C at 350 °C and shows a good compatibility to that of silicon in a wide temperature range, which makes it a promising candidate for anodic bondable low temperature co-fired ceramic substrate applications.  相似文献   

12.
Excessive sintering shrinkage leads to severe deformation and cracking, affecting the microstructure and properties of porous ceramics. Therefore, reducing sintering shrinkage and achieving near-net-size forming is one of the effective ways to prepare high-performance porous ceramics. Herein, low-shrinkage porous mullite ceramics were prepared by foam-gelcasting using kyanite as raw material and aluminum fluoride (AlF3) as additive, through volume expansion from phase transition and gas generated from the reaction. The effects of AlF3 content on the shrinkage, porosity, compressive strength, and thermal conductivity of mullite-based porous ceramics were investigated. The results showed that with the increase of content, the sintering shrinkage decreased, the porosity increased, and mullite whiskers were produced. Porous mullite ceramics with 30 wt% AlF3 content exhibited a whisker structure with the lowest shrinkage of 3.5%, porosity of 85.2%, compressive strength of 3.06 ± 0.51 MPa, and thermal conductivity of 0.23 W/(m·K) at room temperature. The temperature difference between the front and back sides of the sample reached 710°C under high temperature fire resistance test. The low sintering shrinkage preparation process effectively reduces the subsequent processing cost, which is significant for the preparation of high-performance porous ceramics.  相似文献   

13.
《Ceramics International》2016,42(8):10079-10084
Porous glass-ceramics have been prepared by the direct sintering of powder mixtures of metallurgical silicon slag and waste glass. The thermal behavior of silicon slag was examined by differential thermal analysis and thermogravimetry to clarify the foaming mechanism of porous glass-ceramics. The mass loss of silicon slag below 700 °C was attributed to the oxidation of amorphous carbon from residual metallurgical coke in the silicon slag, and the mass gain above 800 °C to the passive oxidation of silicon carbide. The porosity of sintered glass-ceramics was characterized in terms of the apparent density and pore size. By simply adjusting the content of waste glass and sintering parameters (i.e. temperature, time and heating rate), the apparent density changed from 0.4 g/cm3 to 0.5 g/cm3, and the pore size from 0.7 mm to 1.4 mm. In addition to the existing crystalline phases in the silicon slag, the gehlenite phase appeared in the sintered glass-ceramics. The compressive strength of porous glass-ceramics firstly increased and then decreased with the sintering temperature, reaching a maximal value of 1.8 MPa at 750 °C. The mechanical strength was primarily influenced by the crystallinity of glass-ceramics and the interfaces between the crystalline phases and the glassy matrix. These sintered porous glass-ceramics exhibit superior properties such as light-weight, heat-insulation and sound-absorption, and could found their potential applications in the construction decoration.  相似文献   

14.
Monolithic and powdered Biosilicate®, produced by conventional glass-ceramic technology, have been widely recognized as excellent materials for bone tissue engineering applications. In the current research, we focus on an alternative processing route for this material, consisting of the thermal treatment of silicone polymers containing micro-sized oxide fillers, which offers a unique integration between materials synthesis and shaping. In particular, the new method allows obtaining highly porous Biosilicate® glass-ceramics, in the form of 3D printed scaffolds and foams. 3D scaffolds were successfully fabricated by direct writing using an ink based on a silicone polymer and active inorganic fillers, followed by firing in air at 1000°C. The products showed regular geometries, large open porosity (~60 vol%) and still high compressive strength (~7 MPa). Open-cellular foams with porosity up to ∼80 vol% were also prepared from liquid silicones mixed with several fillers, including hydrated sodium phosphate. This specific filler acted both as a foaming agent, because of the gas release by dehydration occurring at low temperature, and as a provider of liquid phase upon firing in air, again at 1000°C.  相似文献   

15.
《Ceramics International》2022,48(16):23119-23126
The high-strength mica-containing glass-ceramics were prepared from granite wastes by bulk crystallization. The influences of SiO2/Al2O3 molar ratio (S/A = 7.72, 9.62, 12.58, 17.82 and 29.67) on the crystallization behavior, microstructure, mechanical properties and machinability of glass-ceramics were investigated. The results demonstrated that the polymerization degree of the glass network decreased with the S/A ratio increasing, which further caused the decrease in glass transition temperature and crystallization temperatures. The increase in the S/A ratio promoted the precipitation of diopside, hectorite, kalsilite and tainiolite in glass-ceramics when the samples were heated at 750 °C, while inhibiting the precipitation of forsterite. For the glass-ceramics crystallized at 800 and 900 °C, the main crystalline phases transformed from diopside, forsterite, and nepheline to diopside, kalsilite, and tainiolite, with the S/A ratio increasing. As the SiO2 gradually replaced Al2O3, the morphology of crystals changed from lamellar to granular, while the mean size of crystals reduced. The Vickers-Hardness values of glass-ceramics crystallized at 800 and 900 °C ascended with S/A ratio rising, and the values were above 6.30 GPa. The bending strength of most glass-ceramics is stable between 90 and 140 MPa, among which the maximum bending strength is 133.28 ± 14.81 MPa. The fracture toughness of the glass-ceramic crystallized at 800 and 900 °C declined, while that at 700 °C increased with a larger S/A ratio. Glass-ceramics after heat-treated at 900 °C with S/A ratio of 9.62 had the largest fracture toughness of 3.28 ± 0.15 MPa m1/2. In preliminary tests of machinability, glass-ceramic after heat-treated at 900 °C with S/A ratio of 9.62 showed better results.  相似文献   

16.
Mechanical properties of glasses can be significantly increased by inducing surface crystallization of a low coefficient of thermal expansion phase. In this work, we produced surface crystallized lithia-alumina-silica glass-ceramics with different crystallized layer thicknesses and analysed the resulting residual stresses and their effect on mechanical properties. The residual stress magnitude was estimated by analytical and experimental methods, as well as numerical modeling. The surface compressive stress reached 390 MPa and 490 MPa, as given by the analytical and experimental determination, respectively. These stresses prevented radial cracking in microhardness and scratch tests. The best glass-ceramic achieved a Vickers hardness of 7.5 GPa and fracture strength of 680 ± 50 MPa in a ball-on-three-ball test. These glass-ceramics are translucent, providing 50–60% transmittance over the visible wavelength spectrum (1.3 mm-thick-sample). This study unveiled the causes of improved mechanical properties and validates the concept that surface crystallization is a valuable technique for developing high strength glass-ceramics.  相似文献   

17.
We developed a new Li2O–Al2O3–SiO2 (LAS) ultra‐low expansion glass‐ceramic by nonisothermal sintering with concurrent crystallization. The optimum sintering conditions were 30°C/min with a maximum temperature of 1000°C. The best sintered material reached 98% of the theoretical density of the parent glass and has an extremely low linear thermal expansion coefficient (0.02 × 10?6/°C) in the temperature range of 40°C–500°C, which is even lower than that of the commercial glass‐ceramic Ceran® that is produced by the traditional ceramization method. The sintered glass‐ceramic presents a four‐point bending strength of 92 ± 15 MPa, which is similar to that of Ceran® (98 ± 6 MPa), in spite of the 2% porosity. It is white opaque and does not have significant infrared transmission. The maximum use temperature is 600°C. It could thus be used on modern inductively heated cooktops.  相似文献   

18.
Porous mullite matrix ceramics have excellent thermal and mechanical properties suitable for applications such as in thermal insulation. However, their applications are limited by processing defects from nonuniform sintering shrinkage and the trade-off between high porosity (preferred for low thermal conductivity) and high mechanical strength. Herein, we seek to minimize the sintering shrinkage by near-net-size preparation and improve the strength by in situ formed whisker network structure. Gelcasting forming technology and pressureless sintering were used to prepare porous mullite matrix ceramics using kyanite and α-Al2O3 powders as the starting materials and using MoO3 to promote the growth of mullite whiskers. The results showed that the sintering shrinkage could be compensated by the volume expansion from solid-state reaction during reaction sintering. The in situ formed three-dimensional (3D) whisker network further reduced sintering shrinkage and effectively improved the strength of the ceramics. An ultralow sintering shrinkage of .78% was achieved. The near-net-shape porous mullite matrix ceramics strengthened by 3D whisker network had a high porosity of 63.9%, a high compressive strength of 83.8 MPa and a high flexural strength of 53.5 MPa.  相似文献   

19.
《Ceramics International》2023,49(15):24960-24971
Stereolithography based 3D printing provides an efficient pathway to fabricate alumina ceramics, and the exploration on the mechanical properties of 3D printed alumina ceramics is crucial to the development of 3D printing ceramic technology. However, alumina ceramics are difficult to sinter due to their high melting point. In this work, alumina ceramics were prepared via stereolithography based 3D printing technology, and the improvement in the mechanical properties was investigated based on the content, the type and the particle size of sintering aids (TiO2, CaCO3, and MgO). The flexural strength of the sintered ceramics increased greatly (from 139.2 MPa to 216.7 MPa) with the increase in TiO2 content (from 0.5 wt% to 1.5 wt%), while significant anisotropy in mechanical properties (216.7 MPa in X-Z plane and 121.0 MPa in X–Y plane) was observed for the ceramics with the addition of 1.5 wt TiO2. The shrinkage and flexural strength of the ceramics decreased with the increase in CaCO3 content due to the formation of elongated grains, which led to the formation of large-sized residual pores in the ceramics. The addition of MgO help decrease the anisotropic differences in shrinkage and flexural strength of the sintered ceramics due to the formation of regularly shaped grains. This work provides guidance on the adjustment in flexural strength, shrinkage, and anisotropic behavior of 3D printed alumina ceramics, and provides new methods for the fabrication of 3D printed alumina ceramics with superior mechanical properties.  相似文献   

20.
《Ceramics International》2022,48(22):33485-33498
Additive manufacturing has received tremendous attention in the manufacturing and materials industry in the past three decades. Zirconia-based advanced ceramics have been the subject of substantial interest related to structural and functional ceramics. NanoParticle Jetting (NPJ), a novel material jetting process for selectively depositing nanoparticles, is capable of fabricating dense zirconia components with a highlydetailed surface, precisely controllable shrinkage, and remarkable mechanical properties. The use of NPJ greatly improves the 3D printing process and increases the printing accuracy. An investigation into the performance of NPJ-printed ceramic components evaluated the physical and mechanical properties and microstructure. The experimental results suggested that the NPJ-fabricated ZrO2 cuboids exhibited a high relative density of 99.5%, a glossy surface with minimum roughness of 0.33 μm, a general linear shrinkage factor of 17.47%, acceptable hardness of 12.43 ± 0.09 GPa, outstanding fracture toughness of 7.52 ± 0.34 MPa m1/2, comparable flexural strength of 699 ± 104 MPa, dense grain distribution of the microstructure, and representative features of the fracture. Subsequently, the exclusive printing scheme that achieved these favorable properties was analyzed. The innovative NanoParticle Jetting? system was shown to have significant potential for additive manufacturing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号