首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2021,47(18):25408-25415
To meet requirements for high porosity and high strength, novel aqueous gel-casting process has been successfully developed to fabricate Al2O3-bonded porous fibrous YSZ ceramics with ρ-Al2O3 and YSZ fibers as raw materials. Microstructure, phase composition, apparent porosity, bulk density, thermal conductivity, and compressive strength of fabricated porous ceramics were investigated, and effects of fiber content on properties were discussed. According to results, bird nest 3D mesh with interlaced YSZ fibers and Al2O3 binder was formed, ensuring the ability to obtain high performance, lightweight ceramics. An increase in the number of YSZ fibers led to more complex interlaced arrangement of fibers and denser network structure of porous ceramics at retaining their stability. Furthermore, their apparent porosity and bulk density increased, whereas thermal conductivity and compressive strength decreased with increasing the fiber content. In particular, comparatively high porosity (71.1–72.7%), low thermal conductivity (0.209–0.503 W/mK), and relatively high compressive strength (3.45–4.24 MPa) were obtained for as-prepared porous ceramics, making them promising for applications in filters, thermal insulation materials, and separation membranes.  相似文献   

2.
Porous mullite ceramics with different crystal shapes of mullite are fabricated by in-situ reaction with middle-grade kyanite as raw material, Al(OH)3, γ-Al2O3, ρ-Al2O3 and α-Al2O3 as alumina sources. Effects of Al2O3 crystal types on morphology evolution and formation mechanisms of mullite, and properties of porous ceramics are investigated. Results show that mullite in the sample with Al(OH)3 mainly shows acicular morphology, because its (001) plane has the minimum interplanar crystal spacing and maximal attachment energy, it grows fast along [001] direction by screw dislocation mechanism. With a successive slowdown in reactivities of Al(OH)3, γ-Al2O3, ρ-Al2O3 and α-Al2O3, the amount and aspect ratio of mullite reduce, its growth mechanism gradually transforms into two-dimensional nucleation. Acicular mullite not only reinforces samples, but makes effective pore sizes smaller, which enable the sample with Al(OH)3 to present low bulk density, high apparent porosity and linear changes, small average pore size and good mechanical strength.  相似文献   

3.
Porous alumina ceramics were fabricated by starch consolidation casting using corn starch as a curing agent while their microstructure, mechanical properties, pore size distribution, and corrosion resistance were examined. Results showed that the porous alumina ceramics with the flexural strength of about 44.31MPa, apparent porosity of about 47.67% and pore size distribution in the range of 1‐4 μm could be obtained with 3wt% SiO2 and 3wt% MgO additives. Corrosion resistance results showed mass losses: hot H2SO4 solution and NaOH solution for 10 hours were 0.77% and 2.19%, which showed that these porous alumina ceramics may offer better corrosion resistance in acidic conditions.  相似文献   

4.
《Ceramics International》2022,48(22):33058-33065
To further resource industrial solid waste, porous ceramics with high porosity were prepared by a gelcasting method using nickel slag and kaolin as raw materials and hydrophilic nontoxic SiO2 aerogel as a gelling agent. The effects of nickel slag content, dispersant and solid content on the properties and microstructure of porous ceramics were investigated in detail in terms of density, compressive strength, porosity, phase composition and micromorphology. The results confirmed that a certain amount of nickel slag can effectively improve the porosity of porous ceramics, while the addition of dispersant can promote the flow of the slurry, enhanced the denseness of the raw billet and significantly improved the compressive strength. However, its excessive use had a negative effect on the ceramic density and porosity. At the same time, the solid content played a key role in the performance of porous ceramics prepared by gelcasting, and too much solid content was also not conducive to the generation of pores. When the nickel slag content was 55%, the amount of dispersant was 2%, and the solid content was 60 vol%, the porous ceramic had a better overall performance, the density of the porous ceramic was 510 kg/m3, the compressive strength was 1.3 MPa, and the porosity reached 80.1%. The major crystalline phases of porous ceramics prepared by nickel slag were cordierite and anorthite.  相似文献   

5.
董宾宾  王刚  袁波  葛会宾  陶力 《耐火材料》2014,(5):335-337,342
为了降低Al2O3多孔陶瓷制备过程中的干燥后收缩和烧后收缩,提高成品率,将d50分别为25.1、9.4和1.1μm的粗、中、细Al2O3粉体按粗粉中粉细粉质量比分别为50 40 10、10 40 50和100%全细粉的级配方式制备Al2O3泡沫浆料,研究颗粒级配对浆料黏度、干燥生坯的线收缩、烧后试样的线收缩、烧后试样的热导率等性能的影响。结果表明:颗粒级配可以有效提高固含量,且颗粒级配后的发泡浆料在静置30 min后仍能保持稳定,颗粒级配可以明显降低生坯的干燥线收缩以及烧后线收缩,并能降低热导率,提高了发泡法-凝胶注模工艺制备氧化铝多孔陶瓷的成品率。  相似文献   

6.
Diatomite-derived porous silica ceramics with high porosities of up to 90% were fabricated using a gelation-freezing method, which resulted in unidirectional cellular or random microstructure with micrometer-sized cells. The ice crystals that were formed during freezing of a diatomite powder dispersed gel were removed by sublimation during vacuum drying, and the green bodies were sintered at 1150–1350 °C for 2 h in air. The thermal conductivity of the porous ceramics prepared with initial solid loadings of 5 and 10 vol% ranged from 0.09 to 0.16 W/(mK) at room temperature. The proposed method is therefore promising for the preparation of ceramic thermal insulators with very low thermal conductivity.  相似文献   

7.
《Ceramics International》2023,49(1):383-391
Considering the low-cost and environmental protection, the porous ceramics with high porosity using natural diatomite powder were successfully prepared by utilizing hot injection moulding and sacrificial fugitives. The impacts of different content of starch as a pore-forming agent on the phase composition, mechanical properties, thermal conductivity, and micro-structure of porous ceramics were investigated. The results demonstrate that starch content can significantly affect the mechanical properties and thermal conductivity of diatomite-based porous ceramics. When the starch content increased from 0 wt % to 50 wt %, the porosity increased from 61.2% to 80%, while the thermal conductivity decreases from 0.239 W/(m K) to 0.098 W/(m K). The low thermal conductivity of porous ceramics may be related to the macroporous–mesoporous composite structure. With the starch content increased, a greater chance of starch granule contact, higher internal pore sizes and a wider pore size distribution in the prepared samples, which resulting in lower mechanical strength, such as the three-point bending strength from 2.83 MPa to 0.46 MPa.  相似文献   

8.
This work presents a new route of processing porous ceramic materials by vacuum induction melting of metallic ternary alloys from the system Ni–Zr–Y. Following internal oxidation results in an interpenetrating network of nickel and oxide phase consisting of yttria and zirconia. After dissolution of the metallic nickel matrix the oxide phase remains as a stable porous ceramic material with a multimodal pore size distribution. The porosity, pore size distribution and specific surface area can be controlled by alloy composition, solidification conditions and oxidation parameters.  相似文献   

9.
《Ceramics International》2021,47(22):31187-31193
In this study, porous calcium silicate (CS) ceramics with oriented arrangement of lamellar macropore structure were prepared by directional freeze casting method. The lamellar macropores were connected by the micropores on the pore wall, which had good pore interconnectivity. The effects of solid loading of the slurry, freezing temperature, sintering additive content, and sintering temperature on the microstructures and compressive strength of the synthesized porous materials were investigated systematically. The results showed that with the increase of solid loading (≤20 vol%) and sintering additive content, the sizes of lamellar pores and pore walls increased gradually, the open porosity decreased and the compressive strength increased. The sintering temperature had little effect on the pore size of the ceramics, but increasing the sintering temperature (≤1050 °C) promoted the densification of the pore wall, reduced the porosity, and improved the strength. The decrease of freezing temperature had little effect on porosity, but it reduced the size of lamellar pore and pore wall, so as to improve the strength. Finally, porous CS ceramics with lamellar macropores of about 300–600 μm and 2–10 μm micropores on the pore wall were obtained. The porous CS ceramics had high pore interconnectivity, an open porosity of 66.25% and a compressive strength of 5.47 MPa, which was expected to be used in bone tissue engineering.  相似文献   

10.
刘嘉杰  黄肖容  隋意 《精细化工》2020,37(11):2332-2335,2376
采用相转化和烧结相结合的方法制备了氧化钇稳定氧化锆(YSZ)中空纤维陶瓷膜,研究了铸膜液中YSZ粉末含量和烧结温度对中空纤维陶瓷膜的微观结构和性能的影响。结果表明,YSZ中空纤维陶瓷膜的不对称结构包含指状结构和海绵状结构,YSZ含量会影响两种结构的比例,烧结则会引起微观结构的致密化。在铸膜液配比为m(YSZ):m(PSF):m(NMP)=5.0:1:4,烧结温度为1200 ℃的条件下制备出性能良好的中空纤维陶瓷膜,其纯水通量为2.33 m3/(m2·h·MPa),抗弯强度为134.5 MPa。  相似文献   

11.
The porous lithium aluminosilicate (LAS) ceramics with controllable pore structure were fabricated by gel-casting method. The porosity, pore structure, compression strength, gas permeability, and coefficient of thermal expansion (CTE) of the porous LAS ceramics with different monomer content were investigated. The sample with 5 wt.% monomer content has maximum value of compression (26.62 ± 0.54 MPa). When the monomer content increased to 20 wt.%, the porosity, Darcian gas permeability, and thermal expansion coefficient increased to maximum (63.66 %, 13.3 × 10−13 m2, and 1.1–2.6 × 10−6 K−1). The non-Darcian gas permeability showed irregular variation (1.35–3.61 m) with the increase of monomer content. A thermal vibration model was induced to investigate the effect of temperature and monomer content on the CTE. The results showed that the CTE increased with the increase of temperature due to the nonlinear thermal vibration of the atoms in lattice and the asymmetry of the force between particles.  相似文献   

12.
《Ceramics International》2016,42(12):14107-14112
Stabilized Al2TiO5 (AT)-mullite (M) porous ceramics were fabricated by starch consolidation casting using corn starch as curing agent and their microstructure, mechanical properties, pore size distribution and corrosion resistance were examined. Results showed that AT-M porous ceramic with the flexural strength of 11.5 MPa, apparent porosity of about 54.7% and pore size distribution in the range of 1–15 µm could be obtained with 10 wt% corn starch addition. Corrosion resistance results showed mass losses in hot H2SO4 solution and NaOH solution for 10 h to decreased from 1.03% to 0.36% and 4.39–2% when the calcination temperature increased from 1400 °C to 1450 °C, which proved these AT-M porous ceramics to possess an excellent corrosion resistance in acidic condition when calcined at 1450 °C.  相似文献   

13.
《Ceramics International》2023,49(5):7871-7887
The attapulgite (ATP) is one of important raw materials of ceramics and often used as a loading carrier. To control the release rate of composite flame retardant (CFR) when exposed to a fire, and to meet the multi-stage flame retarding requirements, the vacuum negative pressure method was adopted to load four kinds of monomer flame retardants on porous ATP as a carrier after activating pretreatment, respectively. Then CFR nanoparticles with controlled-release effects were prepared by the in-situ polymerization reaction on the surface of monomer flame retardants. After that, zinc hydroxyl stannate, styrene, melamine formaldehyde resin and silicon dioxide with high thermal stability and excellent flame retarding properties were selected as the coating layer of four kinds of monomer flame retardants on ATP carrier. Test results of environmental scanning electron microscope and energy dispersive spectrometer show the satisfactory loading and coating results of CFR nanoparticles. Test results of X-ray photoelectron spectroscopy further confirm the excellent loading conditions and coating film formation on ATP carrier. The thermogravimetry-differential thermal scanning calorimetry tests indicate that the flame retarding duration of both loaded and coated CFR nanoparticles on ATP carrier is prolonged and has a satisfactory controlled-release effect.  相似文献   

14.
《Ceramics International》2021,47(21):30406-30424
This study refers to the application of in-situ electrochemical synthesis as an alternative method to improve the properties of porous materials against harmful external agents that deteriorate them. It is oriented to an understanding of the effects of crystallisation on the pore structure of different compounds commonly used in the restoration and conservation of porous materials (historical ceramics, building walls, sculptures, or biomedical applications). It analyses the microstructural, chemical details, and stability of the neo-formed phases that modify the pore network. The electrochemical synthesis was carried out at ambient temperature (20 °C), over high porous sandstone for crystallising Ca carbonate, Mg carbonate, Ca phosphate, and Ca oxalate compounds. Based on the neo-formed minerals, a comparison was made depending on their specific properties defining how they affected the pore structure. The characterisation included polarised light optical microscopy, environmental and field-emission scanning electron microscopy, digital image analysis, cathodoluminescence (CL-ESEM),energy-dispersive X-ray spectroscopy, and X-ray microdiffraction. Aragonite, hydromagnesite, hydroxyapatite, and whewellite were identified as the majority phases depending on the treatment. Phase transformation, dehydration, and dissolution-re-precipitation processes suggested different degrees of stability, including aragonite/calcite (CaCO3 treatment) and hydromagnesite/magnesite (MgCO3 treatment) transformations and simultaneous crystallisation of brushite/hydroxyapatite ((Ca3(PO4)2 treatment). Electrocrystallisation induced changes in inter-granular porosity, the development of secondary porosity inherent to the minerals, and differences in pore cementation depending on its mineralogy. Among the treatments, Mg carbonate reduced porosity most effectively, followed in descending order by calcium carbonate and calcium phosphate, being the calcium oxalate the less effective.  相似文献   

15.
叔丁醇基凝胶注模成型制备氧化铝多孔陶瓷   总被引:1,自引:0,他引:1  
以微米级Al2O3粉料为原料,叔丁醇为溶剂,采用凝胶注模成型工艺制备了氧化铝多孔陶瓷,并研究了Al2O3浆料的固相体积分数(分别为8%、10%、13%和15%)对1 500℃保温2 h烧后氧化铝多孔陶瓷的气孔率、气孔孔径分布、耐压强度、热导率和显微结构的影响.结果表明:当Al2O3浆料的固相体积分数从8%增加到15%时,氧化铝多孔陶瓷烧结体的总气孔率从71.2%逐渐降低至61.2%,气孔平均孔径从1.0 μm逐渐减小至0.78 μm,耐压强度从16.0 MPa逐渐增大至45.6 MPa,而热导率从1.03 W·(m·K)-1逐渐增大至1.83W·(m·K)-1.  相似文献   

16.
Porous mullite ceramics with an open/closed pore structure were prepared by protein foaming method combined with fly ash hollow spheres. Both the open porosity and total porosity of samples were enhanced by increasing the hollow sphere content. Mullite whiskers with a diameter of 0.2–4 μm were grown in-situ in the porous mullite ceramics with an AlF3 catalyst, conforming to a vapor-solid growth mechanism. The pore structure of the porous mullite ceramics was significantly affected by the mullite whiskers which increased the open porosity and total porosity. Moreover, the median pore size was reduced from 65.05 μm to 36.92 μm after the introduction of mullite whiskers. The flexural strength and the thermal conductivity of the samples decreased with increasing total porosity. The porosity dependence of the thermal conductivity was well described by the universal model, providing a reference for the prediction of thermal conductivity of porous ceramics with open/closed pores.  相似文献   

17.
Porous ceramics based on additive manufacturing have great application potential in many industries, including filtration, catalysis, and heat insulation. In this research, we propose a method for manufacturing porous ceramics with connected channels structure through ceramic digital light processing (DLP) and organic fiber decomposition. The crossed fibers in the green body, working as a pore-forming agent, were decomposed and removed to form connected channels in ceramic. It was confirmed that ball milling changed the fiber morphology during slurry preparation, which was beneficial to promote fibers crossing. Besides, we focused on the influence of the “Sponge Compression effect” during the DLP process, which affected the fibers distribution. The existence of fibers in the green body resulted in uneven pressure distribution during the debinding process, providing a potential source of cracks. Results show that this method can produce channels with a diameter of 100 μm and high connectivity, providing great potential in fabricating high connectivity porous ceramics with complex shapes and structures.  相似文献   

18.
A novel approach to fabricate porous mullite ceramics with homogeneous pore size and high-strength using green non-toxic and cost-effective poly-γ-glutamic acid (γ-PGA) gelling system was reported for the first time. Effect of γ-PGA addition, additive amount and solid loading on rheological behavior of the slurries, and microstructure and properties of samples were investigated systematically. By optimizing the solid loading of mullite samples, we are able to get the sample with small pores (< 200 µm) dominating (93.3% of the total pores), and compressive strength of the sample reaches up to 26.62 MPa. In addition, the mullite ceramics exhibited high porosity of 75.7% with low thermal conductivity of 0.279 W/(m·K) at room temperature. This study not only provides a green and non-toxic gelling system but also offers porous mullite ceramics with low thermal conductivity and excellent mechanical strength as an energy-saving thermal insulation material.  相似文献   

19.
《Ceramics International》2021,47(23):33330-33337
The mixed powders of TiH2, molybdenum, aluminum and graphite with molar ratios of 2/2/n/2.85 (n ranges from 1.0 to 1.4 mol with an interval of 0.1 mol) were used as raw material powders for this work, and a novel porous Mo2Ti2AlC3 was synthesized via reactive synthesis. Through systematic research on the pore structure parameters of porous Mo2Ti2AlC3 prepared with different aluminum content, the results show that there is a clear correlation between the aluminum content and the pore structure parameters. With the aluminum content rising from 1.0 to 1.2 mol, the viscous permeability coefficient and pore size decreased, while the porosity increased; When the aluminum content increased from 1.2 to 1.4 mol, the pore structure parameters of porous Mo2Ti2AlC3 displayed an opposite trend. The reasons for the evolution laws of these pore structure parameters were also discussed in depth. In addition, the pore structure forming mechanism of porous Mo2Ti2AlC3 ceramics during the activation reaction sintering process has been explored. This work can provide an important reference for the subsequent preparation of quaternary porous MAX phase ceramics.  相似文献   

20.
《Ceramics International》2017,43(4):3547-3555
Hafnium diboride (HfB2) ceramics were in-situ synthesized and densified by the spark plasma sintering (SPS) method using HfO2 and amorphous boron (B) as starting powders. Both synthesis and densification processes were succesfully accomplished in a single SPS cycle with one/two step heating schedules, which were designed by considering thermodynamic calculations made by Factsage software. In two step heating schedule, soaking at 1000 °C, which was supposed to be the synthesis temperature of HfB2 particles, caused a creep like behaviour in final ceramic microstructures. A single step synthesis/densification schedule at 2050 °C with a 30 min hold time under 60 MPa uniaxial pressure leads to obtain monolithic HfB2 ceramics up to 94% of it's theoretical density. Considering the literature, low hardness values (max. 12 GPa) were achieved, which were directly attributed to the low bonding between HfB2 grains in terms of the residual stresses occurred during the synthesis and cooling steps. Samples produced by applying one step heating schedule showed transgranural fracture behaviour with a, fracture toughness of 3.12 MPa m1/2. The fracture toughness of the samples produced by applying two step heating schedule was higher (5,06 MPa m1/2) and the fracture mode changed from transgranular to mixed mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号