首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel K2–2xAg2xMg2(MoO4)3 (x = 0–0.09) ceramics were synthesized by conventional solid-state sintering method. Based on the X-ray diffraction (XRD) patterns, all samples were identified to belong to an orthorhombic structure with a space group of P212121(19). The pure phase K2Mg2(MoO4)3 specimen when sintered at 590 °C revealed the favorable microwave dielectric properties: εr of 6.91, Q×f of 21,900 GHz and τf of ?164 ppm/°C. The substitution of Ag+ for K+ in K2–2xAg2xMg2(MoO4)3 (x = 0.01–0.09) ceramics led to the more stable structure and dramatically enhanced the Q×f to a value of 54,900 GHz at 500 °C. The microwave dielectric properties were related to the relative density, microstructure, ionic polarization, lattice energy, packing fraction, and bond valence of the ceramics. It was suggested that for ultra-low temperature co-fired ceramic (ULTCC) applications, K1.86Ag0.14Mg2(MoO4)3 ceramic could be sintered at 500 °C, which revealed an excellent combination of microwave dielectric properties (εr =7.34, Q×f =54,900 GHz and τf =–156 ppm/°C) and good chemical compatibility with aluminum electrodes.  相似文献   

2.
The present study systematically invesitgates the formation and microwave dielectric properties of novel AgMgVO4 ceramics fabricated via the solid-state reaction method. The crystal structure of the ceramics is confirmed to be orthorhombic with a space Group of Pnma (62). A high relative density of 96.2% and an excellent combination of microwave dielectric properties with εr of ~14.89, Q×f of ~19,400 GHz, and τf of ~ ? 2.71 ppm/°C can be achieved for the ceramic sintered at 630 °C. The dielectric constant is mainly influenced by the relative density (porosity) and dielectric polarizability. The Q×f is controlled by the microstructure, packing fraction, and lattice energy, which are also highly related to the unit-cell volume. A smaller unit-cell volume leads to a high Q×f. Variation of the τf is strongly correlated to the bond valence of the specimen. Furthermore, the ceramic exhibits good chemical compatibility with aluminum electrodes and is demonstrated as a potent substrate for a band-pass filter with a center frequency of 3.5 GHz. These findings show a great promise for ultra-low temperature co-fired ceramic applications at high frequencies.  相似文献   

3.
A novel Li2Mg2-xNa2xMo3O12 (x = 0.09) ceramic with ultra-low sintering temperature is prepared by the solid-state reaction method. This ceramic (625 °C) exhibits excellent microwave dielectric properties (εr = 7.9, Q×f = 43844 GHz, τf = ?48.3 ppm/°C), terahertz transmission properties (εr1 = 7.4, tan σ1 = 0.0158, Tcoefficient = 0.598), and chemical compatibility with Ag. For the first time, two polarization selective devices are designed in the microwave and terahertz regions by using this ceramic substrate, respectively. The transmission amplitudes of the right- and left-handed circularly polarized waves of the microwave device at 9.7 GHz are 0.895 and 0.019, respectively. The transmission coefficients of the y- and x-polarized waves of the terahertz device at 0.45 THz are 0.598 and 0.075, respectively. Both functions are verified by the overall far-field radiation pattern. This work promotes the application of dielectric ceramics and ULTCC technology in the microwave and terahertz regions.  相似文献   

4.
Two low temperature sintered NaPb2B2V3O12 (B?=?Mg, Zn) ceramics with garnet structure were synthesized through conventional solid state reaction route and their crystal structure and microwave dielectric properties were investigated for the first time. Rietveld refinements of XRD patterns show both the compounds belong to cubic symmetry with space group Ia-3d. Observed number of Raman bands and group theoretical predictions also confirm cubic symmetry with space group Ia-3d for both NPMVO and NPZVO. At the optimum sintering temperature of 725?°C NPMVO has a relative permittivity of 20.6?±?0.2, unloaded quality factor (Quxf) of 22,800?±?1500?GHz (f?=?7.7?GHz) and temperature coefficient of resonant frequency +25.1?±?1?ppm/°C while NPZVO has relative permittivity of 22.4?±?0.2, Quxf of 7900?±?1500?GHz (f?=?7.4?GHz) and near zero temperature coefficient of resonant frequency of -6?±?1?ppm/°C at 650?°C. The relative permittivity of the compounds is inversely related to the corresponding Raman shifts.  相似文献   

5.
《Ceramics International》2016,42(15):16552-16556
The effect of MgO/La2O3 additives on phase composition, microstructures, sintering behavior, and microwave dielectric properties of 0.7(Sr0.01Ca0.99)TiO3−0.3(Sm0.75Nd0.25)AlO3 (7SCT-3SNA) ceramics prepared via conventional solid-state route were systematically investigated. MgO/La2O3 as additives showed no obvious influence on the phase composition of the 7SCT-3SNA ceramics and all the samples exhibited pure perovskite structures. The presence of MgO/La2O3 additives effectively reduced the sintering temperature of 7SCT-3SNA ceramics due to the formation of a liquid phase at a relatively low temperature during sintering progress. The 0.5 wt% MgO doped 7SCT-3SNA sample with 0.5 wt% of La2O3, sintered at 1320 °C for 4 h, was measured to show superior microwave dielectric properties, with an εr of 45.57, a Q×f value of 46205 GHz (at 5.5 GHz), and τf value of −0.32 ppm/°C, which showed dense and uniform microstructure as well as well-developed grain growth.  相似文献   

6.
《Ceramics International》2022,48(8):10713-10720
Ba2Ti9O20 (short for B2T9) ceramics doped with 0.9 mol% MnO2 and y mol% WO3 were prepared by solid-state reaction. The influence of sintering temperature, content of WO3 dopant and the molar ratio x of TiO2: BaCO3 on crystal structure, microstructures as well as microwave dielectric properties of B2T9 ceramics was systematically investigated. The major phase of all samples is B2T9, and the minor phase is BaWO4, respectively. The content of impurity TiO2 alternates with the variation of compositions and sintering temperature, which also leads to different microwave dielectric properties. With the continuous increase of the sintering temperature, the B2T9 phase grains gradually grow larger and transform from rod grains to plate-like grains. The enlargement and flattening of grains also result in the decrease of compactness and deterioration of microwave dielectric properties. It is found that B2T9 ceramics possess better performance when the sintering temperature is 1340°C, which is related to lower TiO2 content, BaWO4, B2T9 grain size, aspect ratio of B2T9 phase and high compactness. When x = 4 and y = 0.2, the relative dielectric constant, quality factor and the temperature coefficient of resonant frequency are 38, 23758 and 7 ppm/°C, respectively.  相似文献   

7.
《Ceramics International》2022,48(1):199-204
MgNb2-xVx/2O6-1.25x (0.1≤x≤0.6) ceramics with orthorhombic columbite structures were prepared at low-temperature by a solid-phase process. The phase component, microscopic morphology, low-temperature sintering mechanism and microwave dielectric performance of MgNb2-xVx/2O6-1.25x ceramics were comprehensively investigated. Low-temperature sintering densification of dielectric ceramics was achieved via the nonstoichiometric substitution of vanadium (V) at the Nb-site. In contrast to pure MgNb2O6 ceramics, the sintering temperature of MgNb2-xVx/2O6-1.25x (x = 0.2) ceramics was reduced by nearly 300 °C owing to the liquid-phase assisted sintering mechanism. The liquid phase arises from the autogenous low-melting-point phase. Meanwhile, MgNb2-xVx/2O6-1.25x (x = 0.2) samples with nonstoichiometric substitution could achieve a more than 900% improvement in the Q × f value, compared with stoichiometrically MgNb2-xVxO6 (x = 0.1, 0.2) ceramics. Finally, MgNb2-xVx/2O6-1.25x dielectric ceramics possess outstanding microwave dielectric properties: εr = 20.5, Q × f = 91000, and τf = -65 ppm/°C when sintered at 1030 °C for x = 0.2, which provides an alternative material for LTCC technology and an effective approach for low-temperature sintering of Nb-based microwave dielectric ceramics.  相似文献   

8.
Microwave dielectric properties of corundum-structured Mg4Ta2O9 ceramics were investigated as a function of sintering temperatures by an aqueous sol–gel process. Crystal structure and microstructure were examined by X-ray diffraction (XRD) technique and field emission scanning electron microscopy (FE-SEM). Sintering characteristics and microwave dielectric properties of Mg4Ta2O9 ceramics were studied as a function of sintering temperature from 1250 °C to 1450 °C. With increasing sintering temperature, the density, εr and Qf values increased, saturating at 1300 °C with excellent microwave properties of εr=11.9, Qf=195,000 GHz and τf=?47 ppm/°C. Evaluation of dielectric properties of Mg4Ta2O9 ceramics were also analyzed by means of first principle calculation method and ionic polarizability theory.  相似文献   

9.
In this study, the effects of the Mg2+ ions replaced by Ca2+ ions on the microwave dielectric properties of newly developed MgZrTa2O8 were investigated. Mg1-xCaxZrTa2O8 (x = 0–1.0) ceramics were prepared via a solid-state reaction method. Calcination of the mixed powders was performed at 1200 °C and sintering of the powder compacts was accomplished at temperatures from 1200 to 1550 °C. The substitution of Ca2+ significantly inhibited the densification of Mg1-xCaxZrTa2O8, led to the expansion of the unit cells, and triggered the formation of a second phase, CaTa2O6. The porosity-corrected relative permittivity increased almost linearly with the x value because of the replacement of the less polarizable Mg2+ ions by the more polarizable Ca2+ ions. The variation in the Q × f values followed a similar trend as that of the sintered density, and the change trend in the τf values was in accordance with that of relative permittivity. The best composition appeared to be Mg0.9Ca0.1ZrTa2O8, which showed excellent microwave dielectric properties of εr = 22.5, Q × f = 231,951 GHz, and τf = −32.9 ppm/°C. The Q × f value obtained is the highest among the wolframite dielectric ceramics reported in literature.  相似文献   

10.
Low-temperature-fired microwave ceramics are key to realizing the integration and miniaturization of microwave devices. In this study, a facile wet chemical method was applied to synthesize homogenous nano-sized CaF2 powders for simultaneously achieving low-temperature sintering and superior microwave dielectric properties. Pure CaF2 ceramics sintered at 950 °C for 6 h with good microwave dielectric properties (εr = 6.22, Q×f = 36,655 GHz, and τf = ?102 ppm/°C) was achieved. The microwave dielectric properties of the CaF2 ceramics were further improved by introducing LiF as a sintering aid. The sintering temperature of CaF2-based ceramics was effectively lowered from 950 °C to 750 °C with 10 wt% LiF doping, and excellent microwave dielectric properties (εr = 6.37, Q×f = 65,455 GHz, and τf = ?71 ppm/°C) were obtained.  相似文献   

11.
In this study, the (Ca0.95M0.05)V2O6 (M = Zn, Ba) and the CaV2O6 ceramics were synthesized through a solid-state reaction method, and the effects of Zn2+ and Ba2+ substitution on the structure, sintering temperature, densification, microstructure and microwave dielectric properties of CaV2O6 ceramic were analysed. The XRD patterns of the sintered samples indicated a single-phase of CaV2O6 in all temperatures. Substitution of Zn2+ caused a lower sintering temperature and improved the densification of the CaV2O6 ceramic. While the dielectric properties of the (Ca0.95Ba0.05)V2O6 compound were not desirable, the (Ca0.95Zn0.05)V2O6 sample sintered at 650°C for 4 hours showed significant dielectric properties, with εr = 10.29, Q × f ~  53 000 GHz (at 15.5 GHz) and τf = −72.37 ppm/°C. Moreover, the chemical compatibility of the CaV2O6 ceramic with Al electrode was examined.  相似文献   

12.
《Ceramics International》2022,48(24):36433-36440
Microwave dielectric ceramics with simple composition, a low permittivity (εr), high quality factor (Q × f) and temperature stability, specifically in the ultrawide temperature range, are vital for millimetre-wave communication. Hence, in this study, the improvements in sintering behavior and microwave dielectric properties of the SnO2 ceramic with a porous microstructure were investigated. The relative density of the Sn1-xTixO2 ceramic (65.1%) was improved to 98.8%, and the optimal sintering temperature of Sn1-xTixO2 ceramics reduced from 1525 °C to 1325 °C when Sn4+ was substituted with Ti4+. Furthermore, the εr of Sn1-xTixO2 (0 ≤ x ≤ 1.0) ceramics increased gradually with the rise in x, which can be ascribed to the increase in ionic polarisability and rattling effects of (Sn1-xTix)4+. The intrinsic dielectric loss was mainly controlled by rc (Sn/Ti–O), and the negative τf of the SnO2 ceramic was optimised to near zero (x = 0.1) by the Ti4+ substitution for Sn4+. This study also explored the ideal microwave dielectric properties (εr = 13.7, Q × f = 40,700 GHz at 9.9 GHz, and τf = ?7.2 ppm/°C) of the Sn0.9Ti0.1O2 ceramic. Its optimal sintering temperature was decreased to 950 °C when the sintering aids (ZnO–B2O3 glass and LiF) were introduced. The Sn0.9Ti0.1O2-5 wt% LiF ceramic also exhibited excellent microwave dielectric properties (εr = 12.8, Q × f = 23,000 GHz at 10.5 GHz, and τf = ?17.1 ppm/°C). At the ultrawide temperature range (?150 °C to +125 °C), the τε of the Sn0.9Ti0.1O2-5 wt% LiF ceramic was +13.3 ppm/°C, indicating excellent temperature stability. The good chemical compatibility of the Sn0.9Ti0.1O2-5 wt% LiF ceramic and the Ag electrode demonstrates their potential application for millimetre-wave communication.  相似文献   

13.
The TiO2 ceramics were prepared by a solid-state reaction in the temperature range of 920–1100 °C for 2 h and 5 h using TiO2 nano-particles (Degussa-P25 TiO2) as the starting materials. The sinterability and microwave properties of the TiO2 ceramics as a function of the sintering temperature were studied. It was demonstrated that the rutile phase TiO2 ceramics with good compactness could be readily synthesized from the Degussa-P25 TiO2 powder in the temperature range of 920–1100 °C without the addition of any glasses. Moreover, the TiO2 ceramics sintered at 1100 °C/2 h and 920 °C/5 h demonstrated excellent microwave dielectric properties, such as permittivity (Ɛr) value >100, Q × f  > 23,000 GHz and τf  200 ppm/°C.  相似文献   

14.
《Ceramics International》2016,42(7):7962-7967
Y2O3 ceramics with good dielectric properties were prepared via co-precipitation reaction and subsequent sintering in a muffle furnace. The effects of Nd doping and sintering temperature on microwave dielectric properties were studied. With the increase in sintering temperature, the density, quality factor (Q×f), and dielectric constant (εr) values of pure Y2O3 ceramics increased to the maximum and then gradually decreased. The Y2O3 ceramics sintered at 1500 °C for 4 h showed optimal dielectric properties: εr=10.76, Q×f=82, 188 GHz, and τf=−54.4 ppm/°C. With the addition of Nd dopant, the Q×f values, εr, and τf of the Nd: Y2O3 ceramics apparently increased, but excessive amount degraded the quality factor. The Y2O3 ceramics with 2 at% Nd2O3 sintered at 1460 °C displayed good microwave dielectric properties: εr=10.4, Q×f=94, 149 GHz and τf=−46.2 ppm/°C.  相似文献   

15.
BaCu2-xCoxSi2O7 solid solutions with orthorhombic structure (Pnma) were prepared by solid-state reaction method. The phase synthesis process, structural evolution and microwave dielectric properties of BaCu2-xCoxSi2O7 ceramics were investigated. Single BaCu2Si2O7 phase was obtained when calcined at 950 °C for 3 h and was decomposed into BaCuSi2O6 phase when calcined at 1075 °C for 3 h. The sintering process was effectively promoted when Cu2+ was replaced by Co2+ and the maximum solubility of BaCu2-xCoxSi2O7 was located between 0.15 and 0.20. P-V-L complex chemical bond theory and Raman spectra were used to explain the structure-property correlations of BaCu2-xCoxSi2O7 ceramics. The corrected dielectric constant (εr-corr) of BaCu2-xCoxSi2O7 ceramics decreased monotonously with the susceptibility (Σχμ) and ionic polarizability of primitive unit cell. The quality factor (Q × f) increased with bond strength and lattice energy (Ucal), especially the lattice energy of the Si-O bond. The temperature coefficient of resonant frequency (τf) was determined by the susceptibility and lattice energy of the Cu/Co-O bond. The following optimum microwave dielectric properties were obtained at x = 0.15 when sintered at 1000 °C for 3 h: εr = 8.45, Q×f =58958 GHz and τf = -34.4 ppm/°C.  相似文献   

16.
《Ceramics International》2022,48(7):9407-9412
Ca1-xBaxMgSi2O6(x = 0–0.4) ceramics were prepared through a traditional solid-state reaction sintering route with various sintering temperatures. The effects of substituting Ba2+ for Ca2+, the relative density, phase composition, crystal morphology, and microwave dielectric properties of Ca1-xBaxMgSi2O6 (x = 0–0.4) ceramics were thoroughly studied. X-ray diffraction patterns indicate a single phase was formed in the samples when x ≤ 0.2, and the second phase BaMg2Si2O7 appeared at x = 0.4. As the amount of Ba2+ substitution increases, the Q×f value first increases and then decreases due to the combined effects of FWHM of peak v11 and atomic packing density, and the εr value was increased continuously which was closely corrected with the relative density and molecular polarization. The τf value improved slightly with the substituting Ba2+ for Ca2+. Typically, the Ca0.88Ba0.12MgSi2O6 ceramic can be well sintered at 1275 °C for 4 h with a maximum relative density of 99.3%, and possesses optimal microwave dielectric properties: εr=7.49, Q×f=64310 GHz, τf=-44.02 ppm/°C.  相似文献   

17.
The structure and microwave dielectric properties of Sr2(Ti1-xSnx)O4 ceramics were determined in the entire composition range of x?=?0–1.0. X-ray diffraction patterns and Raman spectra indicated a composition-induced onset of octahedral tilting at x?=?0.75, and the crystal structure transformed from tetragonal (I4/mmm) to orthorhombic (Pccn). An obvious change of grain morphology was observed in the phase transformation region as well. The variations of the microwave dielectric properties with composition were systematically investigated and the effect of octahedral tilting on the evolution of τf value was emphasized. Moreover, the relationship between τε and tolerance factor of the present ceramics was revealed and compared with the empirical rule in perovskite structure. The role of tolerance factor in designing the materials with required performance was highlighted.  相似文献   

18.
A new microwave dielectric ceramic, NaSr4V5O17 with low firing temperature was fabricated via the traditional mixed oxide method. Rietveld refinement of XRD profiles and Raman spectrum analysis ascertained that the NaSr4V5O17 compounds crystallized into Sr2V2O7-like triclinic structure with space group P-1 (2) and Z = 1.6. The variation of Q × f value was explained by the combined effects of mean grain size and cell volume rather than packing fraction and bond valence. The change regulation of εr was similar to that of density. The |τf| value is mainly related to the cations bond valence. The NaSr4V5O17 ceramics sintered at 725 °C showed good compatibility with Ag electrode and superior dielectric properties: εr = 8.6, Q × f = 45 900 GHz, τf = ?57.0 ppm/K, making it a potential application for LTCC.  相似文献   

19.
Novel low-fired Li4Mg2NbO6F ceramics were synthesised using a conventional solid-state reaction method. X-ray diffraction and Rietveld refinement confirmed that the Li4Mg2NbO6F compound had a face-centred-cubic rock salt structure [Fm-3 m(225)] above 625 °C. Li4Mg2NbO6F ceramics sintered between 875 °C and 950 °C displayed the optimised density (> 97.5 %). The theoretical εtheo was calculated based on the refined crystal parameters, closing to the measured εr. The ceramic sintered at 900 °C exhibited excellent microwave dielectric properties with εr of 15.53 ± 0.03, Q × f value of 93,300 ± 1100 GHz (at 7.7 GHz) and τf value of ?39.8 ± 0.8 ppm/°C. The compatibility with Ag powders makes the oxyfluoride a potential candidate for LTCC applications.  相似文献   

20.
The LiNiPO4 ceramic for the LTCC technology was prepared via the traditional solid-state reaction route and its dielectric properties were investigated for the first time. The best dielectric properties of LiNiPO4 ceramics with a εr of 7.18, Q×f value of 27,754?GHz and τf of ?67.7?ppm/°C were obtained in samples sintered at 825?°C for 2?h. Rietveld refinement was firstly employed to study the crystal structure and dielectric properties of LiNiPO4 ceramics. Unfortunately, the relatively large negative τf was unfavorable to practical applications. Therefore, we introduced TiO2, which possessed a considerable positive τf, to obtain a desired τf value. The prepared LiNiPO4 ceramics with 15?wt% TiO2 sintered at 900?°C for 2?h exhibited excellent dielectric properties of εr~11.49, Q×f~10,792?GHz, τf~?2.8?ppm/°C. The Ag co-fired experiments confirmed the excellent chemical compatibility with LiNiPO4-TiO2 ceramics which might be potential dielectric LTCCs for high frequency applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号