首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, Ti3Si(Al)C2 was introduced into dense SiC/SiC to improve the mechanical and electromagnetic interference (EMI) shielding properties. In order to reveal the effect of Ti3Si(Al)C2, dense SiC/SiC-Ti3Si(Al)C2 and dense SiC/SiC without Ti3Si(Al)C2 were fabricated. Owing to the plastic deformation toughening mechanism of Ti3Si(Al)C2, SiC/SiC-Ti3Si(Al)C2 performs a new damage mode characterized by matrix/matrix (m/m) debonding. High interfacial shear strength (IFSS) due to large thermal residual stress (TRS) is weakened by m/m debonding. This new mode also brings high effective volume fraction of loading fibers and long path of crack propagation. Hence SiC/SiC-Ti3Si(Al)C2 exhibits higher flexural strength (503 MPa) and fracture toughness (23.7 MPa · m1/2) than the dense SiC/SiC without Ti3Si(Al)C2. In addition, dense SiC/SiC-Ti3Si(Al)C2 shows excellent electromagnetic interference shielding effectiveness (EMI SE, 43.0 dB) in X-band, revealing great potential as thermo-structural and functional material.  相似文献   

2.
In this paper, a low‐temperature densification process of Al–Si alloy infiltration was developed to fabricate C/SiC–Ti3Si(Al)C2, and then the microstructure, mechanical, and electromagnetic interference (EMI) shielding properties were studied compared with those of C/SiC–Ti3SiC2 and C/SiC–Si. The interbundle matrix of C/SiC–Ti3Si(Al)C2 is mainly composed of Ti3Si(Al)C2, which can bring various microdeformation mechanisms, high damage tolerance, and electrical conductivity, leading to the high effective volume fraction of loading fibers and electrical conductivity of C/SiC–Ti3Si(Al)C2. Therefore, C/SiC–Ti3Si(Al)C2 shows excellent bending strength of 556 MPa, fracture toughness 21.6 MPa·m1/2, and EMI shielding effectiveness of 43.9 dB over the frequency of 8.2–12.4 GHz. Compared with C/SiC–Si and C/SiC–Ti3SiC2, both the improvement of mechanical properties and EMI shielding effectiveness can be obtained by the introduction of Ti3Si(Al)C2 into C/SiC, revealing great potential as structural and functional materials.  相似文献   

3.
The resistance of Ti3Si(Al)C2-based materials to strength-impairing contact damage was investigated using the Hertzian indentation method. Microstructural analysis indicated that for the three types of testing materials the contact damage was governed by multiple grain slip, crushed grains, and intergranular shear failure. No cone cracking or other macro-cracks were visible on or beneath the contact damage surfaces. Bending tests on the specimens containing single-cycle contact damage revealed that the resistance of Ti3Si(Al)C2 to strength degradation was significantly improved by incorporating SiC particles into the matrix. The mechanism of the improvement is ascribed to the increased shear resistance and the fact that the hard SiC particles inhibit the downward extent of the contact damage through restricting the slip and deformation of the Ti3Si(Al)C2 grains.  相似文献   

4.
《Ceramics International》2016,42(8):9448-9454
A dense alumina fiber reinforced silicon carbide matrix composites (Al2O3/SiC) modified with Ti3Si(Al)C2 were prepared by a joint process of chemical vapor infiltration, slurry infiltration and reactive melt infiltration. The conductive Ti3Si(Al)C2 phase introduced into the matrix modified the microstructure of Al2O3/SiC. The refined microstructure was composed of conductive phase, semiconductive phase and insulating phase, which led to admirable electromagnetic shielding properties. Electromagnetic interference shielding effectiveness (EMI SE) of Al2O3/SiC and Ti3Si(Al)C2 modified Al2O3/SiC were investigated over the frequency range of 8.2–12.4 GHz. The EMI SE of Al2O3/SiC-Ti3Si(Al)C2 exhibited a significant increase from 27.6 to 42.1 dB compared with that of Al2O3/SiC. The reflection and absorption shielding effectiveness increased simultaneously with the increase of the electrical conductivity.  相似文献   

5.
Interphase plays an important role in the mechanical behavior of SiC/SiC ceramic-matrix composites (CMCs). In this paper, the microstructure and tensile behavior of multilayered (BN/SiC)n coated SiC fiber and SiC/SiC minicomposites were investigated. The surface roughness of the original SiC fiber and SiC fiber deposited with multilayered (BN/SiC), (BN/SiC)2, and (BN/SiC)4 (BN/SiC)8 interphase was analyzed through the scanning electronic microscope (SEM) and atomic force microscope (AFM) and X-ray diffraction (XRD) analysis. Monotonic tensile experiments were conducted for original SiC fiber, SiC fiber with different multilayered (BN/SiC)n interfaces, and SiC/SiC minicomposites. Considering multiple damage mechanisms, e.g., matrix cracking, interface debonding, and fibers failure, a damage-based micromechanical constitutive model was developed to predict the tensile stress-strain response curves. Multiple damage parameters (e.g., matrix cracking stress, saturation matrix crack stress, tensile strength and failure strain, and composite’s tangent modulus) were used to characterize the tensile damage behavior in SiC/SiC minicomposites. Effects of multilayered interphase on the interface shear stress, fiber characteristic strength, tensile damage and fracture behavior, and strength distribution in SiC/SiC minicomposites were analyzed. The deposited multilayered (BN/SiC)n interphase protected the SiC fiber and increased the interface shear stress, fiber characteristic strength, leading to the higher matrix cracking stress, saturation matrix cracking stress, tensile strength and fracture strain.  相似文献   

6.
Three-layer silicon carbide (SiC) cladding architectures are considered to be promising materials for current light-water nuclear reactors. Herein, a novel processing approach was proposed to fabricate dense three-layer SiC tubes by introducing SiC nanowires (NWs) on the graphite rod, which resulted in change in the valley-peak structure of SiCf tubular preform. A dense three-layer-NWs SiC cladding tube, consisting of a chemical vapor infiltration (CVI)-SiC inner layer, a CVI-SiCf/SiC composite layer, and a CVI-SiC outer layer, was obtained through CVI process. Microstructure and hoop strength of the as-obtained three-layer-NWs SiC cladding tube were systematically investigated. By avoiding delamination of the layers and reducing the pores, the three-layer-NWs SiC cladding tube exhibited an average hoop strength of 316.6 MPa with a Weibull modulus of 11.55.  相似文献   

7.
The in situ formation of SiC in Al–40Si alloys during the fabrication of SiC/Al–Si composites by high-pressure solidification were investigated. The results demonstrate that the in situ formation of SiC occurs by a gradual conversion of Al4C3 and Al4SiC4 to SiC. In situ SiC can be formed in an Al–40Si alloy solidified under a pressure of 3 GPa at a temperature of 1373 K. The SiC particles (SiCp) formed in situ was compatible with the α-Al matrix and the Si phases. The relative density of the SiC/Al-38.6Si composite was 99.9%. The bending strengths of the Al–40Si alloy and the SiC/Al-38.6Si composite obtained by solidification under a pressure of 3 GPa were 200.8 MPa and 322 MPa, respectively, which represents an enhancement of 60.3% as a result of reinforcement by the in situ-formed SiC.  相似文献   

8.
A dense SiC/Ti3Si(Al)C2 composite was synthesized by in situ hot pressing powders of Si, TiC and Al as a sintering additive at 1500 °C for 2 h under 30 MPa in Ar atmosphere. This composite has a fine-grained and homogeneous microstructure with grain sizes of 5 μm for Ti3Si(Al)C2 and of 1 μm for SiC. The SiC/Ti3Si(Al)C2 composite possesses an improved oxidation resistance, with parabolic rate constants of 4.57 × 10?8 kg2/m4/s at 1200 °C and 1.31 × 10?7 kg2/m4/s at 1300 °C. This study provides an experimental evidence to confirm the formation of amorphous phases in the oxide scale of the SiC/Ti3Si(Al)C2 composite. Microstructure and phase composition of the SiC/Ti3Si(Al)C2 composite and oxide scales were identified by X-ray diffractometry and scanning electron microscopy. The mechanism for the enhanced oxidation resistance has been discussed.  相似文献   

9.
A layered filler consisting of Ti3SiC2-SiC whiskers and TiC transition layer was used to join SiCf/SiC. The effects of SiCw reinforcement in Ti3SiC2 filler were examined after joining at 1400 or 1500 °C in terms of the microstructural evolution, joining strength, and oxidation/chemical resistances. The TiC transition layer formed by an in-situ reaction of Ti coating resulted in a decrease in thermal expansion mismatch between SiCf/SiC and Ti3SiC2, revealing a sound joint without cracks formation. However, SiCf/SiC joint without TiC layer showed formation of cracks and low joining strength. The incorporation of SiCw in Ti3SiC2 filler showed an increase in joining strength, oxidation, and chemical etching resistance due to the strengthening effect. The Ti3SiC2 filler containing 10 wt.% SiCw along with the formation of TiC was the optimal condition for joining of SiCf/SiC at 1400 °C, showing the highest joining strength of 198 MPa as well as improved oxidation and chemical resistance.  相似文献   

10.
The SiC fibers were coated with Ti3SiC2 interphase by dip-coating. The Ti3SiC2 coated fibers were heat-treated from 900 °C to 1100 °C in vacuum and argon atmospheres to comparatively analyze the effect of temperature and atmosphere on the microstructural evolution and mechanical strength of the fibers. The results show that the surface morphology of Ti3SiC2 coating is rough in vacuum and Ti3SiC2 is decomposed at 1100 °C. However, in argon atmosphere, the surface morphology is smooth and Ti3SiC2 is oxidized at 1000 °C and 1100 °C. At 1100 °C, Ti3SiC2 oxidized to form a thin layer of amorphous SiO2 embedded with TiO2 grains. Meanwhile, defects and pores appeared in the interphase scale. As a result, the fiber strength treated in the argon was lower than that treated in vacuum. The porous Ti3SiC2 interphase fabricated under vacuum was then employed to prepare the SiCf/SiC mini composite by chemical vapor infiltration (CVI) combined with precursor infiltration pyrolysis (PIP), and can effectively improve the toughness of SiCf/SiC mini composite. The propagating cracks can be deflected within the porous interphase layer, which promotes fiber pull-outs under the tensile strength.  相似文献   

11.
《Ceramics International》2022,48(2):1778-1788
SiC/Al2O3 composite powders with SiC nanowires were synthesized using a one-step combustion synthesis method taking silica fume (SiO2), aluminum powder (Al) and carbon black (CB) as raw materials, while ferrocene (C10H10Fe) was used as the catalyst. The calculated results for the relationship between the equilibrium phase and temperature of the Al–SiO2–C system show that SiC and Al2O3 are the only equilibrium phases in the system. In addition, the effects of C10H10Fe on the combustion synthesis process and products were studied. It was found that with increasing catalyst content, the amount of residual Si in the products first decreases and then increases, the combustion temperature first increases and then decreases, and the nanowire content continues to increase. For an optimal amount of C10H10Fe of 0.75 wt%, almost no residual Si is observed in the product, while the combustion temperature (Tc) is high (2104 K), the SiC nanowire content is relatively high, and the nanowire aspect ratio is large. In addition, two growth mechanism models for SiC nanowires: VS and VLS were validated.  相似文献   

12.
Two pressureless and reliable procedures for brazing SiC-based materials have been designed. The joining was obtained by the in-situ formation of a Ti3Si(Al)C2 MAX phase using simple Al-Ti interlayers. Wettability studies were conducted using several Al-Ti alloys in contact with SiC at 1500?°C. The interfacial microstructures and thermodynamic analysis demonstrated that liquid Al3Ti in contact with SiC formed a well-bonded Ti3Si(Al)C2 interfacial layer. These findings guided the design of two joining methods: one consisted of the simple infiltration of Al3Ti into the brazing seam, while an Al3Ti paste/Ti/Al3Ti paste interlayer assembly was designed for the second process. Sound interfaces without cracks were obtained in both processes. The average shear strength was very high, 296?MPa, for the infiltration method; the drawback was the presence of residual Al. Joining through Al3Ti/Ti/Al3Ti interlayers avoided the presence of low-temperature melting phases, with lower shear strength: 85 or 89?MPa depending on the testing method.  相似文献   

13.
Residual thermal stresses in SiC/Ti3SiC2/SiC joining couples were calculated by Raman spectra and simulated by finite element analysis, and then relaxed successfully by postannealing. The results showed that the thermal residual stress between Ti3SiC2 and SiC was about on the order of 1 GPa when cooling from 1300°C to 25°C. The thermal residual stresses can be relaxed by the recovery of structure disorders during postannealing. When the SiC/Ti3SiC2/SiC joints postannealed at 900°C, the bending strength reached 156.9 ± 13.5 MPa, which was almost twice of the as‐obtained SiC/Ti3SiC2/SiC joints. Furthermore, the failure occurred at the SiC matrix suggested that both the flexural strength of joining layer and interface were higher than the SiC matrix.  相似文献   

14.
《Ceramics International》2023,49(8):12508-12517
Two-dimensional plain-woven silicon carbide (SiC) fiber-reinforced SiC matrix (2D SiC/SiC) composite was prepared by polymer infiltration-pyrolysis (PIP). Matrix cracking mechanisms of the composite were investigated by in situ SEM and nano-CT to grasp tensile damage evolution. Results showed that PIP-SiC matrix possessed low-fracture energy with non-homogeneous distribution, leading to simultaneous initiation of matrix cracking outside transverse fiber bundles and in unreinforced regions. Cracks then got deflected along weak fiber/matrix interface, which accelerated crack proliferation within the composite. With an increase in the stress, cracks subsequently deflected along plain-woven layers and converged to form longitudinal macrocracks. The composite was finally delaminated via sliding.  相似文献   

15.
Matrix modification is of great significance for the densification of CVI-SiC/SiC, as well as the improvement of self-healing and oxidation resistance. A eutectic component of Y2O3-Al2O3-SiO2 system modified with CaO (CYAS) was used in this study to modify SiC/SiC at 1400 °C. The oxidation behaviour of the composites was investigated under dry/water oxygen atmosphere at 900 °C and 1300 ℃. Compared to the relatively dense SiC/SiC, the modified SiC/SiC showed a slight increase in flexural strength and fracture toughness at room temperature, as well as a significant increase in oxidation resistance and densification. Our work provides a low-cost, simple-to-operate, short-cycle densification method for CVI-SiC/SiC composites that increases their oxidation resistance without compromising their mechanical properties at room temperature.  相似文献   

16.
《Ceramics International》2021,47(23):32545-32553
Wetting and interfacial behavior of molten Al-(10, 20, 30, 40) at.%Ti alloys on C-terminated 4H–SiC at 1500 and 1550 °C were investigated experimentally, and theoretical bonding strength, structure stability and electronic structure of interfacial reaction products/C-terminated 4H–SiC interfaces were evaluated by first-principle calculations. The wetting experiments show that the Al–Ti/SiC systems present excellent wettability with contact angle of less than 15° except the Al–40Ti/SiC system performed at 1500 °C × 30 min. The SEM-EDS and TEM analyses demonstrate that the reaction products are mainly composed of Al4C3, TiC, Ti3SiC2, Ti5Si3CX and τ phase, and their formation and evolution can be mainly affected by the Ti concentration in the Al–Ti alloys and wetting temperature. Moreover, the calculated results show that the SiC/C-terminated TiC interface presents the highest work of separation and its electronic property reveals that the localization of electrons and formation of covalent bond between interfacial C atoms lead to the excellent bonding strength of SiC/TiC interface.  相似文献   

17.
A new design of seamless joining was proposed to join SiC using electric field-assisted sintering technology. A 500 nm Y coating on SiC was used as the initial joining filler to obtain a desired transition phase of Y3Si2C2 layer via the appropriate interface reactions with the SiC matrix. The phase transformation and decomposition of the transition phase of Y3Si2C2 was designed to achieve almost seamless joining of SiC. The decomposition of the joining layer to SiC, followed up by the inter-diffusion and complete densification with the initial SiC matrix, resulted in the formation of an almost seamless joint at the temperature of 1900 °C. The bending strength of the seamless joint was 134.8 ± 2.1 MPa, which was comparable to the strength of the SiC matrix. The proposed design of seamless joining could potentially be applied for joining of SiC-based ceramic matrix composites with RE3Si2C2 as the joining layer.  相似文献   

18.
《Ceramics International》2023,49(20):32750-32757
Reaction-bonded SiC is a ceramic with excellent thermal properties, good corrosion resistance and the characteristic of near-net-shape manufacturing. However, the poor fracture toughness of free Si limits the applications of reaction-bonded SiC. In this study, TiC was added to reaction-bonded SiC and reacted with free Si to form Ti3SiC2. The effects of TiC and carbon black on the mechanical properties of reaction-bonded SiC were investigated. The results demonstrated that the in-situ formation of Ti3SiC2 and decrease in the content and size of free Si improved the mechanical properties of reaction-bonded SiC ceramics. The mechanical properties of TiC-added reaction-bonded SiC with 17.5 wt% carbon black were superior to those of TiC-added reaction-bonded SiC with 15 wt% carbon black. Moreover, increasing the TiC content of reaction-bonded SiC with 17.5 wt% carbon black from 0 to 7.5 wt% caused an increase in its bending strength from 183.92 to 424.43 MPa and an increase in fracture toughness from 3.7 to 5.24 MPa m1/2.  相似文献   

19.
Titanium silicon carbide (Ti3SiC2) film was synthesized by molten salt synthesis route of titanium and silicon powder based on polymer-derived SiC fibre substrate. The pre-deposited pyrolytic carbon (PyC) coating on the fibre was utilized as the template and a reactant for Ti3SiC2 film. The morphology, microstructure and composition of the film product were characterized. Two Ti3SiC2 layers form the whole film, where the Ti3SiC2 grains have different features. The synthesis mechanism has been discussed from the thickness of PyC and the batching ratio of mixed powder respectively. Finally, the obtained Ti3SiC2 film was utilized as interphase to prepare the SiC fibre reinforced SiC matrix composites (SiCf/Ti3SiC2/SiC composites). The flexural strength (σF) and fracture toughness (KIC) of the SiCf/Ti3SiC2/SiC composite is 460 ± 20 MPa and 16.8 ± 2.4 MPa?m1/2 respectively.  相似文献   

20.
Dense Ti3SiC2-SiC, Ti4SiC3-SiC, and Ti3SiC2-Ti4SiC3-SiC ceramic composites were fabricated through carbosilicothermic reduction of TiO2 under vacuum, followed by hot pressing of the as-synthesized products under 25 MPa at 1600°C. In the reduction step, SiC either alone or in combination with elemental Si was used as a reductant. A one-third excess of SiC was added in the reaction mixtures in order to ensure the presence of approximately 30 vol.% SiC in the products of synthesis. During the hot pressing step, the samples that contained Ti3SiC2 showed better densification compared to those containing Ti4SiC3. The obtained composites exhibited the strength properties typical of coarse-grained MAX-phase ceramics. The flexural strength values of 424 and 321 MPa were achieved in Ti3SiC2-SiC, and Ti3SiC2-Ti4SiC3-SiC composites, respectively. The fracture toughness values were 5.7 MPa·m1/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号