首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 803 毫秒
1.
Restoration of self-sustaining populations of lake trout is underway in all of the Great Lakes and Lake Champlain, but restoration has only been achieved in Lake Superior and in Parry Sound, Lake Huron. We evaluated progress toward restoration by comparing spawning habitat availability, spawner abundance, egg and fry density, and egg survival in Parry Sound in Lake Huron, in Lake Michigan, and in Lake Champlain in 2000–2003. Divers surveyed and assessed abundance of spawners at 5 to 15 sites in each lake. Spawning adults were sampled using standardized gill nets, eggs were sampled using egg bags, and fry were sampled using emergent fry traps and egg bags left on spawning reefs overwinter. Spawning habitat was abundant in each lake. Adult lake trout abundance was low in Lake Michigan and Parry Sound, and very high at one site in Lake Champlain. Egg deposition was lowest in Lake Michigan (0.4–154.5 eggs•m−2, median = 1.7), intermediate in Parry Sound (39–1,027 eggs•m−2, median = 278), and highest in Lake Champlain (0.001–9,623 eggs•m−2, median = 652). Fry collections in fry traps followed the same trend: no fry in Lake Michigan, 0.005–0.06 fry•trap−1 day−1 in Parry Sound, and 0.08–3.6 fry•trap−1 in Lake Champlain. Egg survival to hatch in overwinter egg bags was similar in Lake Michigan (7.6%) and Parry Sound (2.3–8.9%) in 2001–02, and varied in Lake Champlain (0.4–1.1% in 2001–02, and 1.8–18.2 in 2002–03). Lake trout restoration appears unlikely in northern Lake Michigan at current adult densities, and failure of restoration in Lake Champlain suggests that there are sources of high mortality that occur after fry emergence.  相似文献   

2.
Lake trout from Seneca Lake provide an important source of stock for Great Lakes rehabilitation but the lake trout in Seneca Lake have been hatchery supported, themselves, for many years. Hatchery catch data show a continued decline in lake trout population and this is assumed to reflect changes in hatchery stocking, fishing pressure, and lamprey predation. A commensurate increase in the smelt population, since 1973, may have also contributed to the decrease of natural recruitment by lake trout. No indication of reduced egg survival was found in the hatchery which might be related to lake contamination effects. Our survey observations (1980–81) indicate that the lower parts of deep water cobble gravels have become much degraded by fine particulates, making such sites unsuitable for spawning lake trout. It is thought that natural replacement in Seneca Lake is strongly dependent on successful hatch of eggs laid at depths of 25 to 35 m, but the observed relationship between egg deposition and optimal thermal conditions seems to be anomalous. Since no controlling relationship was found between long-term decline of the lake trout population and climatic variation, it is believed that degradation of lake spawning sites has strongly influenced natural recruitment.  相似文献   

3.
Crayfish (Orconectes spp.) and sculpins (Cottus spp.) were collected at eight lake trout spawning reefs in Lake Ontario to assess abundance and potential to consume lake trout eggs. Abundance of crayfish ranged from a high of 9.5/m2 in eastern Lake Ontario to 0/m2 in western Lake Ontario where the absence or near absence at four reefs sampled was attributed to cold water upwelling. Sculpin abundance ranged from 4.2 to 50.1/m2. Mean daily egg consumption (eggs/stomach) for sculpins 50 to 75 mm in length, ranged from 0 to 0.9 but differences among reefs were not significant. At one reef, significantly more eggs (2.5 eggs/stomach) were consumed by large sculpins (> 75 mm) than by small (44–49 mm) sculpins (0.2 eggs/stomach). Estimated egg consumption (eggs/stomach/m2) for sculpins > 43 mm for the eight reefs for the period between estimated date of peak lake trout spawning and a standardized 30-d period post spawning, ranged from 0 to 496 eggs/m2 consumed or from 0 to 54% of estimated egg abundance. No lake trout eggs were found in crayfish stomachs, because of their mode of feeding. Estimated egg consumption by crayfish was indirectly estimated from a relationship developed between carapace length and egg consumption using published literature and experimental work. Using this procedure, estimated egg consumption by crayfish for a standardized 30-d period after the date of peak spawning ranged from 0 to 65 eggs/m2 consumed, or from 0 to 82% of potential egg abundance for the eight reefs. At low egg abundance (< 100/m2), the density of crayfish and sculpin observed in Lake Ontario could result in sufficient egg consumption to cause almost 100% mortality of lake trout eggs. At higher egg abundance, however, mortality due to crayfish and sculpins appears to be relatively low. Deposition was sufficiently low at 5 of 8 sites to suggest the possible importance of sculpin and crayfish predation on lake trout recruitment failure in Lake Ontario.  相似文献   

4.
Lake trout spawn primarily in lakes, and the few river-spawning populations that were known in Lake Superior were believed to be extirpated. We confirmed spawning by lake trout in the Dog River, Ontario, during 2013–2016 by the collection of and genetic identification of eggs, and we describe spawning meso- and microhabitat use by spawning fish. Between 2013 and 2016, a total of 277 lake trout eggs were collected from 39 of 137 sampling locations in the river. The majority of eggs (220) were collected at the transition between the estuary and the river channel crossing the beach. Lake trout eggs were most often located near the downstream end of pools in areas characterized by rapid changes in depth or slope, coarse substrates, and increased water velocities, where interstitial flows may occur. Depths in wadeable areas where eggs were found averaged 0.9?m (range: 0.4 to 1.3?m) and substrate sizes consisted of large gravel, cobble, and boulder; comparable to spawning characteristics noted in lakes. Water velocities averaged 0.66?m·s?1 (range: 0.33 to 1.7?m3·s?1) at mid-depth. This information on spawning habitat could be used to help locate other remnant river-spawning populations and to restore river-spawning lake trout and their habitat in rivers that previously supported lake trout in Lake Superior. The Dog River population offers a unique opportunity to understand the ecology of a river spawning lake trout population.  相似文献   

5.
Recent observations of spawning lake trout Salvelinus namaycush near Drummond Island in northern Lake Huron indicate that lake trout use drumlins, landforms created in subglacial environments by the action of ice sheets, as a primary spawning habitat. From these observations, we generated a hypothesis that may in part explain locations chosen by lake trout for spawning. Most salmonines spawn in streams where they rely on streamflows to sort and clean sediments to create good spawning habitat. Flows sufficient to sort larger sediment sizes are generally lacking in lakes, but some glacial bedforms contain large pockets of sorted sediments that can provide the interstitial spaces necessary for lake trout egg incubation, particularly if these bedforms are situated such that lake currents can penetrate these sediments. We hypothesize that sediment inclusions from glacial scavenging and sediment sorting that occurred during the creation of bedforms such as drumlins, end moraines, and eskers create suitable conditions for lake trout egg incubation, particularly where these bedforms interact with lake currents to remove fine sediments. Further, these bedforms may provide high-quality lake trout spawning habitat at many locations in the Great Lakes and may be especially important along the southern edge of the range of the species. A better understanding of the role of glacially-derived bedforms in the creation of lake trout spawning habitat may help develop powerful predictors of lake trout spawning locations, provide insight into the evolution of unique spawning behaviors by lake trout, and aid in lake trout restoration in the Great Lakes.  相似文献   

6.
Reproduction by hatchery lake trout, critical for rehabilitation of lake trout stocks in the Great Lakes, had not been previously described and measured. Reproduction by hatchery lake trout on a man-made spawning reef in Presque Isle Harbor, Lake Superior, in 1977-80 was qualitatively and quantitatively described using gill nets, egg traps, and fry traps. Scuba divers measured physical parameters of the reef. Lake trout spawned during a 15- to 28-day period between 12 October and 14 November mainly during 1800–2000 hours. The Petersen single census was a better method of estimating adults than either multiple-census or fecundity-egg deposition methods. The Petersen estimate of adults was nearly 4,000 males and 1,900 females in 1979. Egg deposition and swim-up fry production ranged from 122 to 518/m2 and 20 to 46/m2, respectively. Substrate on the man-made reef was a 27- to 42-cm thick layer of granite and limestone cobbles 6 to 20 cm in diameter. Spawning behavior and quantitative aspects of reproduction by hatchery lake trout were similar to that previously reported for native lake trout in the Great lakes and elsewhere. Man-made reefs may be a valuable lake trout management tool.  相似文献   

7.
Non-native rusty crayfish are abundant egg predators on spawning reef habitats for lake trout and coregonines in northern Lake Michigan. To better understand rusty crayfish life-history on these unique habitats, we conducted monitoring in 2012 and 2013 at four locations previously identified as spawning areas for native fish. With the aid of a graphical causal model, we conducted an exploratory statistical analysis using a Bayesian multilevel modeling approach with model selection based on information criteria to identify important environmental variables for predicting rusty crayfish distribution and abundance on spawning reefs. We also compared seasonal trends in relative abundance, inferred from catch-per-unit-effort calculations from trapping, to previously reported accounts from a smaller inland lake. The results from our modeling provide evidence of size-class segregation across subtle changes in habitat characteristics of spawning reefs. Specifically, we found evidence that the distribution of >30 mm rusty crayfish was only weakly related to rock density (#/m2) relative to juveniles and smaller size classes. We also observed highest relative abundances from minnow trap monitoring in mid-October when water temperatures averaged 13.9 °C, which is later in the year and at cooler temperatures than similar monitoring from smaller inland lakes has reported. We hypothesize that unique environmental conditions elicit novel life-history responses from rusty crayfish on Lake Michigan spawning reefs and discuss our findings in the context of native fish restoration in the Laurentian Great Lakes.  相似文献   

8.
Efforts to restore self-sustaining lake trout (Salvelinus namaycush) populations in the Laurentian Great Lakes have had widespread success in Lake Superior; but in other Great Lakes, populations of lake trout are maintained by stocking. Recruitment bottlenecks may be present at a number of stages of the reproduction process. To study eggs and fry, it is necessary to identify spawning locations, which is difficult in deep water. Acoustic sampling can be used to rapidly locate aggregations of fish (like spawning lake trout), describe their distribution, and estimate their abundance. To assess these capabilities for application to lake trout, we conducted an acoustic survey covering 22 km2 at Sheboygan Reef, a deep reef ( < 40 m summit) in southern Lake Michigan during fall 2005. Data collected with remotely operated vehicles (ROV) confirmed that fish were large lake trout, that lake trout were 1–2 m above bottom, and that spawning took place over specific habitat. Lake trout density exhibited a high degree of spatial structure (autocorrelation) up to a range of ∼ 190 m, and highest lake trout and egg densities occurred over rough substrates (rubble and cobble) at the shallowest depths sampled (36–42 m). Mean lake trout density in the area surveyed (∼ 2190 ha) was 5.8 fish/ha and the area surveyed contained an estimated 9500–16,000 large lake trout. Spatial aggregation in lake trout densities, similarity of depths and substrates at which high lake trout and egg densities occurred, and relatively low uncertainty in the lake trout density estimate indicate that acoustic sampling can be a useful complement to other sampling tools used in lake trout restoration research.  相似文献   

9.
Julian's Reef is an historical spawning ground for lake trout (Salvelinus namaycush) in southwestern Lake Michigan. It is a designated lake trout refuge and is the focus of lake trout restoration efforts in Illinois waters of the lake. We studied the reef to determine its potential as spawning habitat for stocked lake trout. We used side-scan sonar and a remotely operated vehicle equipped with a video camera to survey and map 156 ha of lake bed on the southeast portion of the reef, where an earlier study revealed the presence of loose-rock substrate potentially suitable for use by spawning lake trout. Our survey showed that the substrate on the reef that most closely resembled that described in the literature as suitable for spawning by stocked lake trout in the Great Lakes was rubble patches with interstitial depths greater than 20 cm. These rubble patches occupied about 2 ha of the 13-ha expanse of bedrock and rubble substrate near the reef crest in the surveyed area. We estimated that these rubble patches, if fully used by spawning lake trout, could accommodate egg deposition by at least 1,300–3,300 2.7-kg females.  相似文献   

10.
Lake trout stocked in the Great Lakes appear to spawn primarily on shallow reefs (< 16 m deep), particularly on breakwaters or water intake lines. Shallow water substrates are being rapidly colonized by zebra mussels, potentially resulting in degraded substrate and interstitial water quality. The attraction of spawning lake trout to new substrate and the effect of zebra mussels on spawning success was examined. Lake trout eggs and fry were collected on clean cobble and cobble fouled with zebra mussels at the Port of Indiana in southern Lake Michigan, and on each of three recently constructed submerged reefs. Egg deposition was similar among all sites except on new, unfouled cobble, where deposition was 11 to 29 times higher, depending on the collection device used. The ratio of empty egg chorions to intact eggs was similar among all sites except the fouled substrate, where the ratio was 129× higher (P < 0.001). Fry catches were similar on fouled and unfouled substrate, but 6.5 × higher on one of the new reefs (P < 0.01). In laboratory incubators, egg hatching rates were similar in cobble with and without zebra mussels. Lake trout were attracted to spawn on newly constructed artificial reefs, but the presence of zebra mussels appeared to reduce egg deposition and increase damage to eggs. Artificial reefs may successfully increase the amount of spawning substrate available for lake trout, but if they are constructed in shallow water they may not be productive areas for egg incubation and fry hatch due to the presence of zebra mussels, shallow-water egg and fry predators, and storm surge.  相似文献   

11.
A general model was developed to examine the effects of multiple predators on survival of eggs and fry of lake trout, Salvelinus namaycush, associated with spawning reefs. Three kinds of predation were simulated: epibenthic egg predators consuming eggs on the substrate surface during spawning, interstitial egg predators that can move in rocky substrate and consume incubating eggs, and fry predators. Also simulated was the effect of water temperature on predation rates. The model predicted that interstitial predation on eggs accounted for most (76 to 81%) of the predation on early life history stages of lake trout; epibenthic egg predation (12 to 19%) and fry predation (0 to 12%) had less effect on lake trout survival. Initial predation conditions chosen for the model were: epibenthic egg predation peaked at 2 eggs/m2/d over 30 d, interstitial egg predation at 2 eggs/m2/d over 180 d, and fry predation at 1 fry/m2/d over 60 d. With a starting egg density of 100 eggs/m2 and initial predation conditions, no lake trout were estimated to survive to swim-up. At egg densities of 250 eggs/m2, 36% of the lake trout survived. At the highest egg densities examined, 500 to 1,000 eggs/m2, estimated survival increased to about 70 to 80%. Simulated survival rates of lake trout decreased dramatically as predation rate increased but were not as sensitive to increases in the duration of predation.  相似文献   

12.
Native lake trout were extirpated from Lake Erie around 1965 and committed restoration efforts began in 1982. In 2021 and 2022, a total of six lake trout (Salvelinus namaycush) in the free embryo or post-embryo life stage were captured in lake trout embryo traps in Lake Erie offshore of Shorehaven Reef, NY. This represents the first conclusive evidence of successful natural reproduction since extirpation. Trapping locations were identified using the results of a fine-scale positioning acoustic telemetry array, visual observations of adult lake trout exhibiting spawning behavior, and underwater cameras to visually identify possible spawning locations. Lake trout utilized a very specific spawning habitat type—the eastern side of shallow offshore humps in 5–8 m of water. These sites were comprised of habitat typically associated with lake trout spawning with slopes of 5–14° and clean rubble-cobble sized rock with visible interstitial spaces. Genetic barcoding was used to identify the post-embryo stage salmonids to species, and microsatellite genotypes assigned strongly to the Seneca strain which comprises the majority of the adult population. These findings represent a significant milestone for lake trout rehabilitation efforts in Lake Erie, confirming that successful reproduction to the post-embryo stage is possible and supporting continued rehabilitation efforts by Lake Erie management agencies.  相似文献   

13.
Restoration of a wild-produced lake trout Salvelinus namaycush population in Lake Ontario has not been successful despite the adult population often meeting or exceeding restoration targets. Lack of high-quality spawning habitat in Lake Ontario is suggested as one impediment to recruitment of wild lake trout, although the quantity and location of spawning habitat is poorly understood. If high-quality spawning habitat is limited in Lake Ontario, lake trout may be using uncommon spawning locations such as rivers. Anecdotal angler accounts point to the Niagara River as a lake trout spawning location. To better understand the potential of the Niagara River as a spawning location, egg and juvenile fish collections were conducted 12–14 river kilometers from the mouth of the Niagara River from 2010 to 2012; and mature female lake trout with surgically implanted acoustic tags were monitored from 2015 to 2019. Genetic analyses confirmed 60% of collected eggs and 93% of collected post-hatch juvenile fish in the Niagara River were lake trout. Tagged female lake trout returned to the Niagara River over consecutive years during the spawning season. The short duration of lake trout presence in the river (mean = 56 days/year) suggests female lake trout use the Niagara River primarily for spawning. Diversity in spawning locations may provide lake trout population’s resilience against environmental variability through a portfolio effect. Improved identification of riverine spawning locations, including their overall contribution to wild recruitment, may be a useful tool for managers to restore a wild-produced population of lake trout in Lake Ontario.  相似文献   

14.
The rehabilitation of extirpated lake trout (Salvelinus namaycush) in the Great Lakes and Lake Champlain has been hindered by various biological and physiological impediments. Efforts to restore a lake trout fishery to Lake Champlain include hatchery stocking and sea lamprey control. Despite these management actions, there is little evidence of recruitment of naturally-produced fish in annual fall assessments. Spawning occurs at multiple sites lake-wide in Lake Champlain, with extremely high egg and fry densities, yet sampling for juvenile lake trout has only yielded fin-clipped fish. To investigate this recruitment bottleneck, we assessed predation pressure by epi-benthic fish on emergent fry on two spawning reefs and the subsequent survival and dispersal of fry in potential nursery areas. Epi-benthic predators were sampled with 2-h gillnet sets at two small, shallow sites in Lake Champlain throughout the 24-h cycle, with an emphasis on dusk and dawn hours. In total, we documented seven different species that had consumed fry, with consumption rates from 1 to 17 fry per stomach. Rock bass and yellow perch dominated the near-shore fish community and were the most common fry predators. Predator presence and consumption of fry was highest between 19:00 and 07:00. Predators only consumed fry when fry relative abundance was above a threshold of 1 fry trap− 1 day− 1. We used an otter trawl to sample for post-emergent fry adjacent to the reef, but did not capture any age-0 lake trout. Due to the observed predation pressure by multiple littoral, species on shallow spawning reefs, lake trout restoration may be more successful at deep, offshore sites.  相似文献   

15.
Developmental progression of lake trout (Salvelinus namaycush) embryos was examined with light and scanning electron microscopy. From this examination, key developmental stages were described in detail. The key developmental stages were then applied to individual lake trout egg lots incubated in constant temperatures of 2, 4, 6, 8, and 10°C. We used Belehradek's, Thermodynamic, and Power models, and also developed the Zero model to determine stage specific developmental rates of lake trout eggs for each background temperature. From the models, hatch dates and staging were predicted for temperature regimes from Lake Superior (1990–91) and Lake Huron (1996–97). Based on the existing lake temperature data and the observed spawning dates, the Zero and the Power models predict that post peak spawning may contribute significantly to overall recruitment success for these years.  相似文献   

16.
The Mid-Lake Reef Complex (MLRC), a large area of deep (> 40 m) reefs, was a major site where indigenous lake trout (Salvelinus namaycush) in Lake Michigan aggregated during spawning. As part of an effort to restore Lake Michigan's lake trout, which were extirpated in the 1950s, yearling lake trout have been released over the MLRC since the mid-1980s and fall gill net censuses began to show large numbers of lake trout in spawning condition beginning about 1999. We report the first evidence of viable egg deposition and successful lake trout fry production at these deep reefs. Because the area's existing bathymetry and habitat were too poorly known for a priori selection of sampling sites, we used hydroacoustics to locate concentrations of large fish in the fall; fish were congregating around slopes and ridges. Subsequent observations via unmanned submersible confirmed the large fish to be lake trout. Our technological objectives were driven by biological objectives of locating where lake trout spawn, where lake trout fry were produced, and what fishes ate lake trout eggs and fry. The unmanned submersibles were equipped with a suction sampler and electroshocker to sample eggs deposited on the reef, draw out and occasionally catch emergent fry, and collect egg predators (slimy sculpin Cottus cognatus). We observed slimy sculpin to eat unusually high numbers of lake trout eggs. Our qualitative approaches are a first step toward quantitative assessments of the importance of lake trout spawning on the MLRC.  相似文献   

17.
The total phosphorus data from 1968 to 1982 in the Lake Erie central basin trend study area was analyzed to determine in-lake responses to the Great Lakes Water Quality Agreement (GLWQA) phosphorus loading reduction program. The available data for each year were divided into five subsets according to time of year and depth of the water column. Each data subset was regressed as a function of time and total phosphorus loadings to Lake Erie. Linear regression analysis indicates that the in-lake phosphorus concentrations have been decreasing and are well correlated with decreased loadings to the lake. The highest rate of phosphorus decrease with time (0.56 ± 0.10 mg · m−3 yr−1) was obtained by using epilimnetic concentrations from April to December for each year. This data subset also shows the best correlation with decreasing phosphorus loadings. From 1968 to 1982, Lake Erie offshore phosphorus concentrations responded to decreasing external phosphorus loadings at a rate of 0.45 ± 0.09 mg · m−3 per thousand metric tonnes.  相似文献   

18.
Lake trout were extirpated from Lake Champlain by 1900, and are currently the focus of intensive efforts to restore a self-sustaining population. Stocking of yearling lake trout since 1972 has re-established adult populations, spawning occurs at multiple sites lake-wide, and fry production at several sites is very high. However, little to no recruitment past age-0 has occurred, as evidenced by the absence of adults without hatchery fin clips in fall assessments; no regular sampling for juveniles is conducted. We began focused sampling for juvenile lake trout in fall, 2015, in the Main Lake using bottom trawling, and expanded sampling to sites in the north and south of the lake in 2016. In 2015 we collected 303 lake trout < 350 mm total length, of which 23.8% were unclipped. Based on non-overlapping length modes, these wild fish comprised at least three age classes (young-of-year, age-1, and age-2). In 2016, we collected 1215 lake trout < 350 mm, including a fourth wild year class (2016 young-of-year). Forty-nine percent of juvenile lake trout from the Main Lake were unclipped; however, only 20% from the north lake and 9% from the south lake were unclipped. The absence of older unclipped fish indicates that recruitment of wild fish began recently. We discuss several hypotheses to explain this sudden, substantial recruitment success, and factors that may be affecting lake trout restoration in Lake Champlain and the Great Lakes.  相似文献   

19.
Identification of lake trout spawning sites has focused on cobble substrates associated with bathymetric relief (e.g., ‘contour’ or ‘slope’ along reefs), but this ‘model’ may be narrow in scope. Previous telemetry work conducted near Drummond Island, USA, Lake Huron, identified egg presence in substrates at the base of large boulders (>1 m diameter); however, the extent of this phenomenon was unknown. Telemetry data paired with multi-beam bathymetry identified a 0.63 km2 area used by lake trout characterized by low bathymetric relief and numerous (~269) large boulders (>1 m diameter) with small-diameter substrates at their bases. Diver surveys revealed egg presence at all 40 boulders surveyed, exclusively associated with clean gravel-cobble (0.6–42 cm) substrates in undercut areas beneath overhanging edges of boulders and in narrow spaces between adjacent boulders. Egg presence was not associated with boulder or substrate physical characteristics which highlighted the possible importance of interstitial currents. Successful incubation in these habitats was inferred by capture of free embryos and post-embryos the following spring using traps and an electrofishing ROV although at lower densities than at popular spawning habitats nearby (1–3 km away). Free embryos and post-embryos were also caught where eggs were not observed the previous fall including unexpectedly on top of boulders which suggested that post-hatch stages may move more than previously thought. Extensive use of boulder-associated habitats for spawning, egg incubation, and early growth suggested this undescribed habitat type may provide an unanticipated contribution to total available lake trout spawning habitat and recruitment in the Great Lakes.  相似文献   

20.
As part of continuing studies of the reproductive failure of lake trout (Salvelinus namaycush) in Lake Michigan, we measured the survival of lake trout eggs and fry of different origins and reared in different environments. Eggs and milt were stripped from spawning lake trout collected in the fall of 1980 from southeastern Lake Michigan, northwestern Lake Huron, south central Lake Superior, and from hatchery brood stock. Eggs from all sources were incubated, and the newly hatched fry were reared for 139 days in lake water from each of the three upper Great Lakes and in well water. Survival of eggs to hatching at all sites was lowest for those from Lake Michigan (70% of fertilized eggs) and highest for eggs from Lake Superior (96%). Comparisons of incubation water from the different lakes indicated that hatching success of eggs from all sources was highest in Lake Huron water, and lowest in Lake Michigan water. The most notable finding was the nearly total mortality of fry from eggs of southeastern Lake Michigan lake trout. At all sites, the mean survival of Lake Michigan fry through 139 days after hatching was only 4% compared to near 50% for fry from the other three sources. In a comparison of the rearing sites, little influence of water quality on fry survival was found. Thus, the poor survival was associated with the source of eggs and sperm, not the water in which the fry were reared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号