首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, the concept development, system layout, component simulation and the overall DOE system optimization of a HT-PEM fuel cell APU with a net electric power output of 4.5 kW and an onboard methane fuel processor are presented.A highly integrated system layout has been developed that enables fast startup within 7.5 min, a closed system water balance and high fuel processor efficiencies of up to 85% due to the recuperation of the anode offgas burner heat. The integration of the system battery into the load management enhances the transient electric performance and the maximum electric power output of the APU system.Simulation models of the carbon monoxide influence on HT-PEM cell voltage, the concentration and temperature profiles within the autothermal reformer (ATR) and the CO conversion rates within the watergas shift stages (WGSs) have been developed. They enable the optimization of the CO concentration in the anode gas of the fuel cell in order to achieve maximum system efficiencies and an optimized dimensioning of the ATR and WGS reactors.Furthermore a DOE optimization of the global system parameters cathode stoichiometry, anode stoichiometry, air/fuel ratio and steam/carbon ratio of the fuel processing system has been performed in order to achieve maximum system efficiencies for all system operating points under given boundary conditions.  相似文献   

2.
《Journal of power sources》2006,161(2):938-948
In this research, a Simulink model of a standalone vehicular solid-oxide fuel cell (SOFC) auxiliary power unit (APU) is developed. The SOFC APU model consists of three major components: a controller model; a power electronics system model; and an SOFC plant model, including an SOFC stack module, two heat exchanger modules, and a combustor module. This paper discusses the development of the nonlinear dynamic models for the SOFC stacks, the heat exchangers and the combustors. When coupling with a controller model and a power electronic circuit model, the developed SOFC plant model is able to model the thermal dynamics and the electrochemical dynamics inside the SOFC APU components, as well as the transient responses to the electric loading changes. It has been shown that having such a model for the SOFC APU will help design engineers to adjust design parameters to optimize the performance. The modeling results of the SOFC APU heat-up stage and the output voltage response to a sudden load change are presented in this paper. The fuel flow regulation based on fuel utilization is also briefly discussed.  相似文献   

3.
The present study considers the optimal sizing of a three-way hybrid powertrain consisting of a compact reformer, a compact battery and a low temperature PEM fuel cell stack serving as the main power unit. A simulation model consisting of the relevant characteristic parameters of the three power sources has been developed and has been used to study the fuel utilization features of the hybrid powertrain while going through the NEDC driving cycle with a given auxiliary power requirement. The optimality is based on minimizing fuel cost while having an assured range of 500 km under practical driving conditions and a further 100 km under reduced auxiliary power usage. It is shown that for performance characteristics of Toyota Mirai and for average auxiliary power consumption of 5 kW, a smaller NiMH battery size of 1.3 kWh together with a fuel processor of 5.6 kW constant output would be optimal with a further requirement of 25% more hydrogen and 33 kg of ethanol to be carried on-board. Substantial reductions in vehicle mass and fuel load can be achieved for more modest performance characteristics and auxiliary power consumption.  相似文献   

4.
Effective thermal integration could enable the use of compact fuel processors with PEM fuel cell-based power systems. These systems have potential for deployment in distributed, stationary electricity generation using natural gas. This paper describes a concept wherein the latent heat of vaporization of H2O is used to control the axial temperature gradient of a fuel processor consisting of an autothermal reformer (ATR) with water gas shift (WGS) and preferential oxidation (PROX) reactors to manage the CO exhaust concentration. A prototype was experimentally evaluated using methane fuel over a range of external heat addition and thermal inputs. The experiments confirmed that the axial temperature profile of the fuel processor can be controlled by managing only the vapor fraction of the premixed reactant stream. The optimal temperature profile is shown to result in high thermal efficiency and a CO concentration less than 40 ppm at the exit of the PROX reactor.  相似文献   

5.
The realization of a proven approach combining small hydrogen fuel cells with reformed methanol has continued to be elusive. This is so because of the overwhelming challenge of thermally integrating a chemical process involving many steps, each at a unique temperature, within a confined volume. In addition, heat loss to the environment becomes correspondingly higher as overall size shrinks due to increasing surface-to-volume ratio, requiring an inordinate use of system volume on thermal insulation. To address these challenges, we present a study based on extrapolation of experiment which incorporates novel cylindrical symmetry of the methanol fuel processor based on microchemical system technology. Models for two different fuel processor-proton exchange fuel cell systems of 4-W and 20-W scale are presented. ASPEN process simulation was used to establish basic system operating parameters. Finite difference modeling of the axisymmetric configuration was used to establish the heat flows in the systems. The results indicate strong potential for the cylindrical arrangement to provide viable self-contained small form factor battery replacements.  相似文献   

6.
The commercial vehicles are in leadership in emission production for on-road vehicles. This high rate of emission is released in highly populated areas where diesel driven internal combustion engines are running in inefficient operating ranges. Except the propulsion, the internal combustion engine is powering the auxiliary devices such as refrigerator unit, etc. The auxiliary units are significant contributor to the overall pollutant production. In this paper the auxiliary load power supply for refrigerator unit is shifted from internal combustion engine to PEM fuel cell. The decrease in CO2 accumulated emissions was estimated by simulation model containing vehicle model (tire, brake, differential, gearbox and driver model), diesel engine model and auxiliary power demand model. Four stroke diesel engine was modeled and investigated. For this investigation the fully filled truck was used for simulating 100% weight load. The gross weight is 7500 kg.The novelty of the approach is the simulation performed on realistic combination of city and urban road cycle. The focus was on modelling the realistic truck driving cycle in order to correctly predict emission and fuel consumption reduction. Since initial investigation are performed on constant load demand of fuel cell, simplified model of PEMFC was applied. PEM fuel cell stack was designed in order to meet the demands of auxiliary consumers. The H2 consumption and size of hydrogen tank was estimated based on assumed 8-h daily drive. Finally, the migration of power supply for auxiliary units on commercial vehicle from internal combustion engine showed potential of fuel savings and CO2 reduction of up to 9% for a given case on this specific test cycle.  相似文献   

7.
Development of new materials for polymer electrolyte membranes has allowed increasing the operational temperature of PEM fuel cell stacks above 120 °C. The present paper summarizes the main results obtained in a research devoted to the design, fabrication and operational tests performed on a high-temperature PEMFC prototype. A 5-cell stack has been assembled with commercial Celtec P-1000 high-temperature MEAs from BASF Fuel Cells, but the rest of elements and processes have been developed at LIFTEC research facilities. The stack includes different novelties, such as the way in which reactant gases are supplied to the flowfield, the design of the flowfield geometry for both anode and cathode plates, the concept of block that eases the assembling and maintenance processes, and the heating strategy for a very fast start-up. The different procedures comprising the assembly, closing and conditioning stages are also widely described and discussed. Results obtained in the preliminary operational tests performed are very promising, and it is expected that the 30-cells HT-PEMFC stack will deliver an electric power 2.3 times larger than the one initially predicted.  相似文献   

8.
《Journal of power sources》2005,145(2):675-682
Due to the increasing demand for electrical power in today's passenger vehicles, and with the requirements regarding fuel consumption and environmental sustainability tightening, a fuel cell-based auxiliary power unit (APU) becomes a promising alternative to the conventional generation of electrical energy via internal combustion engine, generator and battery. It is obvious that the on-board stored fuel has to be used for the fuel cell system, thus, gasoline or diesel has to be reformed on board. This makes the auxiliary power unit a complex integrated system of stack, air supply, fuel processor, electrics as well as heat and water management. Aside from proving the technical feasibility of such a system, the development has to address three major barriers:start-up time, costs, and size/weight of the systems. In this paper a packaging concept for an auxiliary power unit is presented. The main emphasis is placed on the fuel processor, as good packaging of this large subsystem has the strongest impact on overall size.The fuel processor system consists of an autothermal reformer in combination with water–gas shift and selective oxidation stages, based on adiabatic reactors with inter-cooling. The configuration was realized in a laboratory set-up and experimentally investigated. The results gained from this confirm a general suitability for mobile applications. A start-up time of 30 min was measured, while a potential reduction to 10 min seems feasible. An overall fuel processor efficiency of about 77% was measured. On the basis of the know-how gained by the experimental investigation of the laboratory set-up a packaging concept was developed. Using state-of-the-art catalyst and heat exchanger technology, the volumes of these components are fixed. However, the overall volume is higher mainly due to mixing zones and flow ducts, which do not contribute to the chemical or thermal function of the system. Thus, the concept developed mainly focuses on minimization of those component volumes. Therefore, the packaging utilizes rectangular catalyst bricks and integrates flow ducts into the heat exchangers. A concept is presented with a 25 l fuel processor volume including thermal isolation for a 3 kWel auxiliary power unit. The overall size of the system, i.e. including stack, air supply and auxiliaries can be estimated to 44 l.  相似文献   

9.
A system model was used to develop an autothermal reforming fuel processor to meet the targets of 80% efficiency (higher heating value) and start-up energy consumption of less than 500 kJ when operated as part of a 1-kWe natural-gas fueled fuel cell system for cogeneration of heat and power. The key catalytic reactors of the fuel processor – namely the autothermal reformer, a two-stage water gas shift reactor and a preferential oxidation reactor – were configured and tested in a breadboard apparatus. Experimental results demonstrated a reformate containing ∼48% hydrogen (on a dry basis and with pure methane as fuel) and less than 5 ppm CO. The effects of steam-to-carbon and part load operations were explored.  相似文献   

10.
11.
To lower vehicle greenhouse gas emissions, many automotive companies are exploring fuel cell technologies, which combine hydrogen and oxygen to produce electricity and water. While hydrogen storage and infrastructure remain issues, Renault and Nuvera Fuel Cells are developing an onboard fuel processor, which can convert a variety of fuels into hydrogen to power these fuel cell vehicles.The fuel processor is now small enough and powerful enough for use on a vehicle. The catalysts and heat exchangers occupy 80 l and can be packaged with balance of plant controls components in a 150-l volume designed to fit under the vehicle. Recent systems can operate on gasoline, ethanol, and methanol with fuel inputs up to 200 kWth and hydrogen efficiencies above 77%. The startup time is now less than 4 min to lower the CO in the hydrogen stream to the target value for the fuel cell.  相似文献   

12.
A complete miniaturized methanol fuel processor/fuel cell system was developed and put into operation as compact hydrogen supplier for low power application. The whole system consisting of a micro-structured evaporator, a micro-structured reformer and two stages of preferential oxidation of CO (PROX) reactor, micro-structured catalytic burner, and fuel cell was operated to evaluate the performance of the whole production line from methanol to electricity. The performance of micro methanol steam reformer and PROX reactor was systematically investigated. The effect of reaction temperature, steam to carbon ratio, and contact time on the methanol steam reformer performance is presented in terms of catalytic activity, selectivity, and reformate yield. The performance of PROX reactor fed with the reformate produced by the reformer reactor was evaluated by the variation of reaction temperature and oxygen to CO ratio. The results demonstrate that micro-structured device may be an attractive power source candidate for low power application.  相似文献   

13.
An integrated procedure for math modeling and power control strategy design for a fuel cell hybrid vehicle (FCHV) is presented in this paper. Dynamic math model of the powertrain is constructed firstly, which includes four modules: fuel cell engine, DC/DC inverter, motor-driver, and power battery. Based on the mathematic model, a power control principle is designed, which uses full-states closed-loop feedback algorithm. To implement full-states feedback, a Luenberger state observer is designed to estimate open circuit voltage (OCV) of the battery, which make the control principle not sensitive to the battery SOC (state of charge) estimated error. Full-states feedback controller is then designed through analyzing step responding of the powertrain and test data. At last of the paper, the results of simulation and field test are illustrated. The results show that the power control strategy designed takes into account the performance and economy characteristics of components of the FCHV powertrain and achieves the control object excellently.  相似文献   

14.
A new fuel processor approach for portable fuel cell power sources significantly improves upon microreformers by overcoming the difficulties with heat deficiencies and contaminants in the product hydrogen. Instead of reforming, the processor uses methanol decomposition to enable the byproduct, carbon monoxide (CO), to be used as the heat source. A hydrogen permselective membrane segregates the CO for combustion in an integrated burner, maximizes the decomposition conversion, and provides pure hydrogen for a fuel cell. Discharging the CO-rich retentate through an ejector to draw combustion air into the burner greatly simplifies the system. High and stable hydrogen yields are attained with optimized catalysts and fuel compositions. The resultant simple, efficient, and self-heating processor produces 85% of the hydrogen content of the fuel. A 20 W autonomous power source based on this novel fuel processor demonstrates a fuel energy density >1.5 Wh g?1(electrical), nearly twice as high as microreformer power sources.  相似文献   

15.
This paper describes the design, realisation and test of a power unit based on a polymer electrolyte fuel cell, operating at room temperature, for portable application. The device is composed of an home made air breathing fuel cell stack, a metal hydride tank for H2 supply, a dc–dc converter for power output control and a fan for stack cooling. The stack is composed by 10 cells with an active surface of 25 cm2 and produces a rated power of 15 W at 6 V and 2 A. The stack successfully runs with end-off fed hydrogen without appreciable performance degradation during the time. The final assembled system is able to generate 12 W at 9.5 V, and power a portable DVD player for 3 h in continuous. The power unit has collected about 100 h of operation without maintenance.  相似文献   

16.
A fuel processor was constructed which incorporated two burners with direct steam generation by water injection into the burner exhaust. These burners with direct water vaporization enabled rapid fuel processor start-up for automotive fuel cell systems. The fuel processor consisted of a conventional chain of reactors: auto-thermal reformer (ATR), water gas shift (WGS) reactor and preferential oxidation (PrOx) reactor. The criticality of steam to the fuel reforming process was illustrated. By utilizing direct vaporization of water, and hydrogen for catalyst light-off, excellent start performance was obtained with a start time of 20 s to 30% power and 140 s to full power.  相似文献   

17.
A novel portable electric power generation system, fuelled by ammonia, is introduced and its performance is evaluated. In this system, a solid oxide fuel cell (SOFC) stack that consists of anode-supported planar cells with Ni-YSZ anode, YSZ electrolyte and YSZ-LSM cathode is used to generate electric power. The small size, simplicity, and high electrical efficiency are the main advantages of this environmentally friendly system. The results predicted through computer simulation of this system confirm that the first-law efficiency of 41.1% with the system operating voltage of 25.6 V is attainable for a 100 W portable system, operated at the cell voltage of 0.73 V and fuel utilization ratio of 80%. In these operating conditions, an ammonia cylinder with a capacity of 0.8 l is sufficient to sustain full-load operation of the portable system for 9 h and 34 min. The effect of the cell operating voltage at different fuel utilization ratios on the number of cells required in the SOFC stack, the first- and second-law efficiencies, the system operating voltage, the excess air, the heat transfer from the SOFC stack, and the duration of operation of the portable system with a cylinder of ammonia fuel, are also studied through a detailed sensitivity analysis. Overall, the ammonia-fuelled SOFC system introduced in this paper exhibits an appropriate performance for portable power generation applications.  相似文献   

18.
Ultra-low sulphur diesel (ULSD) is the preferred fuel for mobile auxiliary power units (APU). The commercial available technologies in the kW-range are combustion engine based gensets, achieving system efficiencies about 20%. Solid oxide fuel cells (SOFC) promise improvements with respect to efficiency and emission, particularly for the low power range. Fuel processing methods i.e., catalytic partial oxidation, autothermal reforming and steam reforming have been demonstrated to operate on diesel with various sulphur contents. The choice of fuel processing method strongly affects the SOFC's system efficiency and power density.This paper investigates the impact of fuel processing methods on the economical potential in SOFC APUs, taking variable and capital cost into account. Autonomous concepts without any external water supply are compared with anode recycle configurations. The cost of electricity is very sensitive on the choice of the O/C ratio and the temperature conditions of the fuel processor. A sensitivity analysis is applied to identify the most cost effective concept for different economic boundary conditions.The favourite concepts are discussed with respect to technical challenges and requirements operating in the presence of sulphur.  相似文献   

19.
This paper presents the design and simulation validation of two energy management strategies for dual-stack fuel cell electric vehicles. With growing concerns about environmental issues and the fossil energy crisis, finding alternative methods for vehicle propulsion is necessary. Proton exchange membrane (PEM) fuel cell systems are now considered to be one of the most promising alternative energy sources. In this work, the challenge of further improving the fuel economy and extending the driving range of a fuel cell vehicle is addressed by a dual-stack fuel cell system with specific energy management strategies. An efficiency optimization strategy and an instantaneous optimization strategy are proposed. Simulation validation for each strategy is conducted based on a dual-stack fuel cell electric vehicle model which follows the new European driving cycle (NEDC). Simulation results show that a dual-stack fuel cell system with proposed energy management strategies can significantly improve the fuel economy of a fuel cell vehicle and thus lengthen the driving range while being able to keep the start-stop frequency of the fuel cell stack within a reasonable range.  相似文献   

20.
In this article, the exergy-based modular design is utilized to assess the overall exergy efficiency of the integrated methanol reforming fuel cell (a combination of on-board MeOH-to-H2 processor and proton exchange membrane fuel cell) and improve the 3D modular layout of MeOH-to-H2 processor. It is noted that the preheating system improvement can save installation space as well as increase the overall exergy efficiency. Finally, the 3D modular layout of the new integrated methanol reforming fuel cell (IMRFC) installed into the BMW vehicle chassis demonstrates that this IMRFC vehicle could become a feasible option as compared to the 2016 Toyota Mirai hydrogen fuel cell vehicle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号