首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of power sources》2006,161(2):1187-1191
We recently reported on a high-power nanoporous proton-conducting membrane (NP-PCM)-based direct methanol fuel cell (DMFC) operated with triflic acid. However, accompanying the advantages of methanol as a fuel, such as low cost and ease of handling and storage, are several pronounced disadvantages: toxicity, high flammability, low boiling point (65 °C) and the strong tendency to pass through the polymer-exchange membrane (high crossover). The focus of this work is the development of a high-power direct ethylene glycol fuel cell (DEGFC) based on the NP-PCM. Ethylene glycol (EG) has a theoretical capacity 17% higher than that of methanol in terms of Ah ml−1 (4.8 and 4, respectively); this is especially important for portable electronic devices. It is also a safer (bp 198 °C) fuel for direct-oxidation fuel cell (DOFC) applications. Maximum power densities of 320 mW cm−2 (at 0.32 V) at 130 °C have been achieved in the DEGFC fed with 0.72 M ethylene glycol in 1.7 M triflic acid at 3 atm at the anode and with dry air at 3.7 atm at the cathode. The cell platinum loading was 4 mg Pt cm−2 on each electrode. The overpotentials at the cathodes and at the anodes of the DEGFC and DMFC were measured, compared and discussed.  相似文献   

2.
《Journal of power sources》2006,162(2):1232-1235
A vapor fed passive direct methanol fuel cell (DMFC) is proposed to achieve a high energy density by using pure methanol for mobile applications. Vapor is provided from a methanol reservoir to the membrane electrode assembly (MEA) through a vaporizer, barrier and buffer layer. With a composite membrane of lower methanol cross-over and diffusion layers of hydrophilic nanomaterials, the humidity of the MEA was enhanced by water back diffusion from the cathode to the anode through the membrane in these passive DMFCs. The humidity in the MEA due to water back diffusion results in the supply of water for an anodic electrochemical reaction with a low membrane resistance. The vapor fed passive DMFC with humidified MEA maintained 20–25 mW cm−2 power density for 360 h and performed with a 70% higher fuel efficiency and 1.5 times higher energy density when compared with a liquid fed passive DMFC.  相似文献   

3.
《Journal of power sources》2006,159(2):979-986
Sulfonic acid modified perfluorocarbon polymer proton exchange membrane (PEM) fuel cells operated at elevated temperatures (120–150 °C) can greatly alleviate CO poisoning on anode catalysts. However, fuel cells with these PEMs operated at elevated temperature and atmospheric pressure typically experience low relative humidity (RH) and thus have increased membrane and electrode resistance. To operate PEM fuel cells at elevated temperature and high RH, work is needed to pressurize the anode and cathode reactant gases, thereby decreasing the efficiency of the PEM fuel cell system. A liquid-fed hydrocarbon-fuel processor can produce reformed gas at high pressure and high relative humidity without gas compression. If the anode is fed with this high-pressure, high-relative humidity stream, the water in the anode compartment will transport through the membrane and into the ambient pressure cathode structure, decreasing the cell resistance. This work studied the effect of anode pressurization on the cell resistance and performance using an ambient pressure cathode. The results show that high RH from anode pressurization at both 120 and 150 °C can decrease the membrane resistance and therefore increase the cell voltage. A cell running at 150 °C obtains a cell voltage of 0.43 V at 400 mA cm−2 even with 1% CO in H2. The results presented here provide a concept for the application of a coupled steam reformer and PEM fuel cell system that can operate at 150 °C with reformate and an atmospheric air cathode.  相似文献   

4.
《Journal of power sources》2006,160(1):353-358
The performances of the proton exchange membrane fuel cell (PEMFC), direct formic acid fuel cell (DFAFC) and direct methanol fuel cell (DMFC) with sulfonated poly(ether sulfone) membrane are reported. Pt/C was coated on the membrane directly to fabricate a MEA for PEMFC operation. A single cell test was carried out using H2/air as the fuel and oxidant. A current density of 730 mA cm−2 at 0.60 V was obtained at 70 °C. Pt–Ru (anode) and Pt (cathode) were coated on the membrane for DMFC operations. It produced 83 mW cm−2 maximum power density. The sulfonated poly(ether sulfone) membrane was also used for DFAFC operation under several different conditions. It showed good cell performances for several different kinds of polymer electrolyte fuel cell applications.  相似文献   

5.
《Journal of power sources》2006,161(1):282-289
A novel MEA is fabricated to improve the performance of air-breathing direct methanol fuel cells. A diffusion barrier on the anode side is designed to control methanol transport to the anode catalyst layer and thus suppressing the methanol crossover. A catalyst coated membrane with a hydrophobic gas diffusion layer on the cathode side is employed to improve the oxygen mass transport. It is observed that the maximum power density of the advanced DMFC with 2 M methanol solution achieves 65 mW cm−2 at 60 °C. The value is nearly two times more than that of a commercial MEA. At 40 °C, the power densities operating with 1 and 2 M methanol solutions are over 20 mW cm−2 with a cell potential at 0.3 V.  相似文献   

6.
《Journal of power sources》2006,157(1):193-195
Hydrogels are used in methanol fuel cartridges to control fuel diffusion from the fuel reservoir to the anode electrode. This ability to control fuel diffusion rates enables the reduction of excess fuel supply that causes fuel crossover through the proton-exchange membrane. Cell performance was increased drastically from 14 to 21.5 m W cm−2 with higher methanol concentrations using hydrogel fuel cartridges that fulfill the role of a diffusion-rate-controlling agent. This result implies that the hydrogel retards fuel diffusion, even at higher concentrations and suppresses the methanol crossover.  相似文献   

7.
《Journal of power sources》2006,154(1):138-144
Operating a proton exchange membrane (PEM) fuel cell at elevated temperatures (above 100 °C) has significant advantages, such as reduced CO poisoning, increased reaction rates, faster heat rejection, easier and more efficient water management and more useful waste heat. Catalyst materials and membrane electrode assembly (MEA) structure must be considered to improve PEM fuel cell performance. As one of the most important electrode design parameters, Nafion® content was optimized in the high-temperature electrodes in order to achieve high performance. The effect of Nafion® content on the electrode performance in H2/air or H2/O2 operation was studied under three different operation conditions (cell temperature (°C)/anode (%RH)/cathode (%RH)): 80/100/75, 100/70/70 and 120/35/35, all at atmospheric pressure. Different Nafion® contents in the cathode catalyst layers, 15–40 wt%, were evaluated. For electrodes with 0.5 mg cm−2 Pt loading, cell voltages of 0.70, 0.68 and 0.60 V at a current density of 400 mA cm−2 were obtained at 35 wt% Nafion® ionomer loading, when the cells were operated at the three test conditions, respectively. Cyclic voltammetry was conducted to evaluate the electrochemical surface area. The experimental polarization curves were analyzed by Tafel slope, catalyst activity and diffusion capability to determine the influence of the Nafion® loading, mainly associated with the cathode.  相似文献   

8.
《Journal of power sources》2006,160(1):97-104
The performance of a single-cell direct methanol fuel cell (DMFC) using carbon nanotube-supported Pt–Ru (Pt–Ru/CNT) as an anode catalyst has been investigated. In this study, the Pt–Ru/CNT electrocatalyst was successfully synthesized using a modified polyol approach with a controlled composition very close to 20 wt.%Pt–10 wt.%Ru, and the anode was prepared by coating Pt–Ru/CNT electrocatalyst on a wet-proof carbon cloth substrate with a metal loading of about 4 mg cm−2. A commercial gas diffusion electrode (GDE) with a platinum black loading of 4 mg cm−2 obtained from E-TEK was employed as the cathode. The membrane electrode assembly (MEA) was fabricated using Nafion® 117 membrane and the single-cell DMFC was assembled with graphite endplates as current collectors. Experiments were carried out at moderate low temperatures using 1 M CH3OH aqueous solution and pure oxygen as reactants. Excellent cell performance was observed. The tested cell significantly outperformed a comparison cell using a commercial anode coated with carbon-supported Pt–Ru (Pt–Ru/C) electrocatalyst of similar composition and loading. High conductivity of carbon nanotube, good catalyst morphology and suitable catalyst composition of the prepared Pt–Ru/CNT electrocatalyst are considered to be some of the key factors leading to enhanced cell performance.  相似文献   

9.
《Journal of power sources》2005,141(2):250-257
Proton exchange membrane (PEM) fuel cells with optimized cathode structures can provide high performance at higher temperature (120 °C). A “pore-forming” material, ammonium carbonate, applied in the unsupported Pt cathode catalyst layer of a high temperature membrane electrode assembly enhanced the catalyst activity and minimized the mass-transport limitations. The ammonium carbonate amount and Nafion® loading in the cathode were optimized for performance at two conditions: 80 °C cell temperature with 100% anode/75% cathode R.H. and 120 °C cell temperature with 35% anode/35% cathode R.H., both under ambient pressure. A cell with 20 wt.% ammonium carbonate and 20 wt.% Nafion® operating at 80 °C and 120 °C presented the maximum cell performance. Hydrogen/air cell voltages at a current density of 400 mA cm−2 using the Ionomem/UConn membrane as the electrolyte with a cathode platinum loading of 0.5 mg cm−2 were 0.70 V and 0.57 V at the two conditions, respectively. This was a 19% cell voltage increase over a cathode without the “pore-forming” ammonium carbonate at the 120 °C operating condition.  相似文献   

10.
《Journal of power sources》2006,159(2):1084-1088
A borohydride fuel cell has been constructed using a platinized multiwalled carbon nanotube (MWCNT) anode and an air cathode having an anionic exchange membrane separating the anode and cathode. The MWCNT was functionalized with carboxylic acid under nitric acid reflux. Platinum metal was subsequently incorporated into it by galvanostatic deposition. The platinized functionalized MWCNT was characterized by thermogravimetric analysis, Fourier transform infrared spectrum, scanning electron microscope and X-ray diffraction. The fuel cell produced a voltage of 0.95 V at low currents and a maximum power density of 44 mW cm−2 at room temperature in 10% sodium borohydride in a 4 M sodium hydroxide medium. Another borohydride fuel cell under identical conditions using carbon as the anode produced a cell voltage of 0.90 V and power density of about 20 mW cm−2. The improved performance of the MWCNT is attributed to the higher effective surface area and catalytic activity.  相似文献   

11.
《Journal of power sources》2006,158(1):129-136
Small fuel cells are considered likely replacements for batteries in portable power applications. In this paper, the performance of a passive air breathing direct formic acid fuel cell (DFAFC) at room temperature is reported. The passive fuel cell, with a palladium anode catalyst, produces an excellent cell performance at 30 °C. It produced a high open cell potential of 0.9 V with ambient air. It produced current densities of 139 and 336 mA cm−2 at 0.72 and 0.53 V, respectively. Its maximum power density was 177 mW cm−2 at 0.53 V. Our passive air breathing fuel cell runs successfully with formic acid concentration up to 10 and 12 M with little degradation in performance. In this paper, its constant voltage test at 0.72 V is also demonstrated using 10 M formic acid. Additionally, a reference electrode was used to determine distinct anode and cathode electrode performances for our passive air breathing DFAFC.  相似文献   

12.
A granular aluminum anode was investigated for use in an alkaline aluminum/hydrogen peroxide fuel cell. The fuel cell utilizes granules of aluminum (8–12 mm in diameter) as an anode, potassium hydroxide (KOH) as an anolyte and hydrogen peroxide as a catholyte. Granular anodes have a significantly higher surface area than planar surfaces, thereby resulting in higher utilization of the anode material. Polarization experiments were performed as well as closed circuit power production experiments. KOH concentrations were varied in the experiments. Polarization experiments achieved a current density of 10.02 mA/cm2 using 2 M KOH and granular aluminum with a surface area of 205.6 cm2. Power production experiments sustained a current density of 0.05 mA/cm2 using 1.5 M KOH and granular aluminum with a surface area of 59.8 cm2. Results indicate that granular metal anodes have potential for use in high energy density fuel cells.  相似文献   

13.
《Journal of power sources》2002,110(1):138-143
A hybrid capacitor consisting of porous tantalum oxide anode electrode and ruthenium oxide cathode electrode was examined and characterized. The capacitor has a capacitance of 35 mF and an internal resistance of 45 mΩ. It was found that the capacitance was insensitive to current density up to 110 mA/cm2, and temperature ranging from −70 to 50 °C. During dc charge and discharge cycles, the potential of the cathode electrode was within the electrochemical stability window. However, a sudden voltage-jump as high as 7.5 V could occur at the cathode electrode during a short circuit discharge. A simple model was established to describe the transient behavior of cathode and anode electrodes. It was found that the voltage-jump was proportional to the ratio of the internal resistance of the cathode electrode to the total resistance of the capacitor. The resistance distribution inside the capacitor was also determined to be 47, 28, and 25% from the cathode, anode, and electrolyte, respectively.  相似文献   

14.
《Journal of power sources》2005,145(2):101-107
Pure layered phosphates of varying crystalline phases and crystallinity and composites of gradient layers of zirconium phosphate in Nafion 117-membranes have been prepared. The proton conductivity and, in case of the composites, also the dynamic mechanical properties of these materials were measured under different conditions of temperature and humidity. Membrane-electrode assemblies with low platinum catalyst loading of 0.4 mg cm−2 Pt at the cathode and 1.9 mg cm−2 Pt–Ru at the anode were examined in a direct methanol fuel cell (DMFC) at medium temperatures (130 °C). The conductivity of the layered zirconium phosphates is superior to the titanium phosphates and increases with decreasing crystallite size. The electrical performance of the composites in a DMFC-environment is slightly decreased as compared to the unmodified membrane but taking the reduced methanol crossover into account, higher efficiencies can be reached with the zirconium phosphate modified membrane. Furthermore, the mechanical properties are significantly improved by the presence of the inorganic compound.  相似文献   

15.
The transient phenomenon of fuel cell with 5 cm2 active area is investigated in this study by current density step increase and switching voltage under different conditions. It is found that there is an undershoot when the current density step increase is at the loading of 60% RH anode cathode, 3 stoic., 70 °C, 15 psi for automobile applications. The voltage is almost zero under 0.2 step increase to 1.0 A/cm2 due to the H+ transport in membrane or H2/O2 in catalyst layer is almost used up. The undershoot phenomenon is more serious under gases stoichiometries of 3.0/3.0 when H2 is fully humidified due to low gas concentration or flooding on the electrode. This phenomenon would induce the degradation of fuel cell components.  相似文献   

16.
《Journal of power sources》2002,112(2):655-659
This paper considers the effect of methanol pretreatment on the performance of a direct formic acid fuel cell (DFAFC). We find that conditioning of the cell in methanol results in a substantial increase in current. The current at 60 °C increases from 95 to 320 mA/cm2 at 0.3 V. The maximum power density increases from 33 to 119 mW/cm2. The cell resistance decreases from 0.37 to 0.32 Ω cm2. CO stripping experiments show that the catalyst is not being greatly affected by these changes. Our interpretation of the data is that the anode layer of membrane electrolyte assembly (MEA) undergoes some change during the methanol conditioning. The change improves the performance.  相似文献   

17.
A multi-phase, multi-component, thermal and transient model is applied to simulate the operation of a passive direct methanol fuel cell and optimize the design. The model takes into consideration the thermal effects and the variation of methanol concentration at the feeding reservoir above the fuel cell. Polarization and constant current cases are numerically simulated and compared with experiments for liquid feed concentration, membrane thickness, water management and air management systems. Parameters considered when determining an optimal design include power density, fuel utilization and energy efficiencies and water balance coefficients. An optimal liquid feed concentration is determined to be 2.0 mol kg?1, which achieved a maximum power density of 21 mW cm?2 and a fuel utilization efficiency of 63.0%. An optimal design of a cell uses a thick membrane (Nafion 117) to reduce methanol crossover and two additional cathode GDLs to improve the water balance coefficient and efficiency of the cell. This combination results in a power density of 23.8 mW cm?2 and a water balance coefficient of ?1.71. An air filter may also be added to improve the efficiency and water balance coefficient of the cell, however, a small loss in power density will also occur. Using an Oil Sorbents air filter the water balance coefficient is increased to ?0.85, the fuel utilization efficiency is improved by 27.35% and the maximum power density decreased to 21.6 mW cm?2.  相似文献   

18.
Laminar flow fuel cells (LFFCs) overcome some key issues – most notably fuel crossover and water management – that typically hamper conventional polymer electrolyte-based fuel cells. Here we report two methods to further minimize fuel crossover in LFFCs: (i) reducing the cross-sectional area between the fuel and electrolyte streams, and (ii) reducing the driving force of fuel crossover, i.e. the fuel concentration gradient. First, we integrated a nanoporous tracketch separator at the interface of the fuel and electrolyte streams in a single-channel LFFC to dramatically reduce the cross-sectional area across which methanol can diffuse. Maximum power densities of 48 and 70 mW cm?2 were obtained without and with a separator, respectively, when using 1 M methanol. This simple design improvement reduces losses at the cathode leading to better performance and enables thinner cells, which is attractive in portable applications. Second, we demonstrated a multichannel cell that utilizes low methanol concentrations (<300 mM) to reduce the driving force for methanol diffusion to the cathode. Using 125 mM methanol as the fuel, a maximum power density of 90 mW cm?2 was obtained. This multichannel cell further simplifies the LFFC design (one stream only) and its operation, thereby extending its potential for commercial application.  相似文献   

19.
The oxygen reduction reaction at a manganese dioxide cathode in alkaline medium is studied using cyclic voltammetry and by measuring volume of oxygen consumed at the cathode. The performance of the manganese dioxide cathode is also determined in the presence of fuel and an alkali mixture with a standard Pt/Ni anode in a flowing alkaline-electrolyte fuel cell. The fuels tested are methanol, ethanol and sodium borohydride (1 M), while 3 M KOH is used as the electrolyte. The performance of the fuel cell is measured in terms of open-circuit voltage and current–potential characteristics. A single peak in the cyclic voltammogram suggests that a four-electron pathway mechanism prevails during oxygen reduction. This is substantiated by calculating the number of electrons involved per molecule of oxygen that are reacted at the MnO2 cathode from the oxygen consumption data for different fuels. The results show that the power density of the fuel cell increases with increase in MnO2 loading to a certain limit but then decreases with further loading. The maximum power density is obtained at 3 mg cm−2 of MnO2 for each of the three different fuels.  相似文献   

20.
《Journal of power sources》2006,158(2):1344-1347
A stability test on direct methanol fuel cells (DMFCs) was carried out at current densities of 100, 150, and 200 mA cm−2. Each test lasted for 145 h in the three cases. X-ray diffraction, energy dispersive spectroscopy, and scanning electron microscopy were used for analysis of the membrane electrode assemblies (MEAs). The maximum power densities were 93.9, 79.9, and 55.1% of the initial value after operation at 100, 150, and 200 mA cm−2, respectively. A PtRu black catalyst with an original particle size of 3.3 nm was used for the anode electrode. For the MEAs operated at 100, 150, and 200 mA cm−2, the PtRu particle sizes increased from the original size to 3.4, 3.9, and 4.2 nm, respectively, while a Pt black catalyst used for the cathode electrode did not change in size. Dissolution of the Ru was observed, and the ratio of (Pt:Ru) changed from (53:47) in the case of the fresh MEA, to (54:46), (56:44), and (73:27) for the MEAs after operation at 100, 150, and 200 mA cm−2, respectively. The equivalent weight of the NafionTM membrane increased from a weight of 1264 g for a fresh membrane, to a weight of 1322, 1500, and 1945 g with the increases in operating current density to 100, 150, and 200 mA cm−2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号