首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of power sources》2005,141(2):250-257
Proton exchange membrane (PEM) fuel cells with optimized cathode structures can provide high performance at higher temperature (120 °C). A “pore-forming” material, ammonium carbonate, applied in the unsupported Pt cathode catalyst layer of a high temperature membrane electrode assembly enhanced the catalyst activity and minimized the mass-transport limitations. The ammonium carbonate amount and Nafion® loading in the cathode were optimized for performance at two conditions: 80 °C cell temperature with 100% anode/75% cathode R.H. and 120 °C cell temperature with 35% anode/35% cathode R.H., both under ambient pressure. A cell with 20 wt.% ammonium carbonate and 20 wt.% Nafion® operating at 80 °C and 120 °C presented the maximum cell performance. Hydrogen/air cell voltages at a current density of 400 mA cm−2 using the Ionomem/UConn membrane as the electrolyte with a cathode platinum loading of 0.5 mg cm−2 were 0.70 V and 0.57 V at the two conditions, respectively. This was a 19% cell voltage increase over a cathode without the “pore-forming” ammonium carbonate at the 120 °C operating condition.  相似文献   

2.
《Journal of power sources》2006,159(2):979-986
Sulfonic acid modified perfluorocarbon polymer proton exchange membrane (PEM) fuel cells operated at elevated temperatures (120–150 °C) can greatly alleviate CO poisoning on anode catalysts. However, fuel cells with these PEMs operated at elevated temperature and atmospheric pressure typically experience low relative humidity (RH) and thus have increased membrane and electrode resistance. To operate PEM fuel cells at elevated temperature and high RH, work is needed to pressurize the anode and cathode reactant gases, thereby decreasing the efficiency of the PEM fuel cell system. A liquid-fed hydrocarbon-fuel processor can produce reformed gas at high pressure and high relative humidity without gas compression. If the anode is fed with this high-pressure, high-relative humidity stream, the water in the anode compartment will transport through the membrane and into the ambient pressure cathode structure, decreasing the cell resistance. This work studied the effect of anode pressurization on the cell resistance and performance using an ambient pressure cathode. The results show that high RH from anode pressurization at both 120 and 150 °C can decrease the membrane resistance and therefore increase the cell voltage. A cell running at 150 °C obtains a cell voltage of 0.43 V at 400 mA cm−2 even with 1% CO in H2. The results presented here provide a concept for the application of a coupled steam reformer and PEM fuel cell system that can operate at 150 °C with reformate and an atmospheric air cathode.  相似文献   

3.
《Journal of power sources》2006,154(1):138-144
Operating a proton exchange membrane (PEM) fuel cell at elevated temperatures (above 100 °C) has significant advantages, such as reduced CO poisoning, increased reaction rates, faster heat rejection, easier and more efficient water management and more useful waste heat. Catalyst materials and membrane electrode assembly (MEA) structure must be considered to improve PEM fuel cell performance. As one of the most important electrode design parameters, Nafion® content was optimized in the high-temperature electrodes in order to achieve high performance. The effect of Nafion® content on the electrode performance in H2/air or H2/O2 operation was studied under three different operation conditions (cell temperature (°C)/anode (%RH)/cathode (%RH)): 80/100/75, 100/70/70 and 120/35/35, all at atmospheric pressure. Different Nafion® contents in the cathode catalyst layers, 15–40 wt%, were evaluated. For electrodes with 0.5 mg cm−2 Pt loading, cell voltages of 0.70, 0.68 and 0.60 V at a current density of 400 mA cm−2 were obtained at 35 wt% Nafion® ionomer loading, when the cells were operated at the three test conditions, respectively. Cyclic voltammetry was conducted to evaluate the electrochemical surface area. The experimental polarization curves were analyzed by Tafel slope, catalyst activity and diffusion capability to determine the influence of the Nafion® loading, mainly associated with the cathode.  相似文献   

4.
A simple direct mixing of carbon-supported catalysts with Nafion without adding any additional organic solvents was used to make electrodes for oxygen reduction in PEM fuel cells. For E-TEK 20% Pt/C, a Nafion content of 30% in the catalyst layer exhibited the best performance. Electrode dried from 90 to 150 °C showed little difference in performance. Highest power densities increased almost linearly with cell temperature, and values of 0.52, 0.60, 0.63, and 0.72 W/cm2 were achieved at 35, 50, 60, and 75 °C, respectively, for a cathode with a Pt loading of 0.12 mg/cm2 and operated using air at ambient pressure. A maximum performance was achieved with Pt loadings of 0.20±0.05 and 0.35±0.05 mg/cm2 for 20 and 40% Pt/C, respectively, while the maximum performance using 40% Pt/C was only slightly better than that using 20% Pt/C. A Nafion/carbon sublayer with up to 30% Nafion content added between ELAT and the catalyst layer did not show any effect on performance.  相似文献   

5.
《Journal of power sources》2006,161(1):168-182
This paper presents experimental data on the effects of varying ambient temperature (10–40 °C) and relative humidity (20–80%) on the operation of a free-breathing fuel cell operated on dry-hydrogen in dead ended mode. We visualize the natural convection plume around the cathode using shadowgraphy, measure the gas diffusion layer (GDL) surface temperature and accumulation of water at the cathode, as well as obtain polarization curves and impedance spectra. The average free-convection air speed was 9.1 cm s−1 and 11.2 cm s−1 in horizontal and vertical cell orientations, respectively. We identified three regions of operation characterized by increasing current density: partial membrane hydration, full membrane hydration with GDL flooding, and membrane dry-out. The membrane transitions from the fully hydrated state to a dry out regime at a GDL temperature of approximately 60 °C, irrespective of the ambient temperature and humidity conditions. The cell exhibits strong hysteresis and the dry membrane regime cannot be captured by a sweeping polarization scan without complete removal of accumulated water after each measurement point. Maximum power density of 356 mW cm−2 was measured at an ambient temperature of 20 °C and relative humidity of 40%.  相似文献   

6.
《Journal of power sources》2006,158(1):137-142
Sulfonic-functionalized heteropolyacid–SiO2 nanoparticles were synthesized by grafting and oxidizing of a thiol-silane compound onto the heteropolyacid–SiO2 nanoparticle surface. The surface functionalization was confirmed by solid-state NMR spectroscopy. The composite membrane containing the sulfonic-functionalized heteropolyacid–SiO2 nanoparticles was prepared by blending with Nafion® ionomer. TG–DTA analysis showed that the composite membrane was thermally stable up to 290 °C. The DMFC performance of the composite membrane increased the operating temperature from 80 to 200 °C. The function of the sulfonic-functionalized heteropolyacid–SiO2 nanoparticles was to provide a proton carrier and act as a water reservoir in the composite membrane at elevated temperature. The power density was 33 mW cm−2 at 80 °C, 39 mW cm−2 at 160 °C and 44 mW cm−2 at 200 °C, respectively.  相似文献   

7.
《Journal of power sources》2004,129(2):143-151
A control strategy is presented in this paper which is suitable for miniature hydrogen/air proton-exchange membrane (PEM) fuel cells. The control approach is based on process modelling using fuzzy logic and tested using a PEM stack consisting of 15 cells with parallel channels on the cathode side and a meander-shaped flow-field on the anode side. The active area per cell is 8 cm2. Commercially available materials are used for the bipolar plates, gas diffusion layers and the membrane-electrode assembly (MEA). It is concluded from a simple water balance model that water management at different temperatures can be achieved by controlling the air stoichiometry. This is achieved by varying the fan voltage for the air supply of the PEM stack. A control strategy of the Takagi Sugeno Kang (TSK) type, based on fuzzy logic, is presented. The TSK-type controller offers the advantage that the system output can be computed in an efficient way: the rule consequents of the controller combine the system variables in linear equations. It is shown experimentally that drying out of the membrane at high temperatures can be monitored by measuring the ac impedance of the fuel cell stack at a frequency of 1 kHz. Flooding of single cells leads to an abrupt drop of the corresponding single-cell voltage. Therefore, the fuzzy rule base consists of the ac impedance at 1 kHz and all single-cell voltages. The parameters of the fuzzy rule base are determined by plotting characteristic diagrams of the fuel cell stack at constant temperatures. The fuel cell stack can be controlled at T=60 °C up to a power level of 7.5 W. The fuel cell stack is controlled successfully even when the external electric load changes. At T=65 °C, a maximum power level of 8 W is found. A decrease of the maximum power level is observed for higher temperatures.  相似文献   

8.
《Journal of power sources》2006,159(2):817-823
The performance of a poly(2,5-benzimidazole) (ABPBI) membrane based high temperature PEM fuel cell in presence of carbon monoxide, at various temperatures is reported here. The ABPBI was synthesized by polymerization of 3,4-diaminobenzoic acid in a polymerization medium containing methanesulfonic acid (CH3SO3H) and phosphorous pentoxide (P2O5). The ABPBI membranes were characterized by fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). A maximum conductivity of 0.026 S cm−1 at 180 °C was obtained for the membrane doped with 1.2 molecules of phosphoric acid (H3PO4) per polymer repeat unit. Fuel cell performance was evaluated using dry hydrogen/oxygen gases and was comparable with that reported in the literature. Performance of a single cell at different temperatures was studied with 0.48 and 1.0 vol.% of CO in the hydrogen fuel. The studies lead to the conclusion that CO poisoning is not a serious problem above 170 °C. Performance of the fuel cell operating at 210 °C is not at all affected by 1.0 vol.% of CO in the hydrogen feed.  相似文献   

9.
《Journal of power sources》2006,157(1):104-113
This paper presents a comprehensive study of hydrogen production from sodium borohydride (NaBH4), which is synthesized from sodium tetraborate (Na2B4O7) decomposition, for proton exchange membrane (PEM) fuel cells. For this purpose, Na2B4O7 decomposition reaction at 450–500 °C under hydrogen atmosphere and NaBH4 decomposition reaction at 25–40 °C under atmospheric pressure are selected as a common temperature range in practice, and the inlet molar quantities of Na2B4O7 are chosen from 1 to 6 mol with 0.5 mol interval as well. In order to form NaBH4 solution with 7.5 wt.% NaBH4, 1 wt.% NaOH, 91.5 wt.% H2O, the molar quantities of NaBH4 are determined. For a PEM fuel cell operation, the required hydrogen production rates are estimated depending on 60, 65, 70 and 75 g of catalyst used in the NaBH4 solution at 25, 32.5 and 40 °C, respectively. It is concluded that the highest rate of hydrogen production per unit area from NaBH4 solution at 40 °C is found to be 3.834 × 10−5 g H2 s−1 cm−2 for 75 g catalyst. Utilizing 80% of this hydrogen production, the maximum amounts of power generation from a PEM fuel cell per unit area at 80 °C under 5 atm are estimated as 1.121 W cm−2 for 0.016 cm by utilizing hydrogen from 75 g catalyst assisted NaBH4 solution at 40 °C.  相似文献   

10.
《Journal of power sources》2006,154(2):394-403
Electrical output behaviour obtained on solid oxide fuel cell stacks, based on planar anode supported cells (50 or 100 cm2 active area) and metallic interconnects, is reported. Stacks (1–12 cells) have been operated with cathode air and anode hydrogen flows between 750 and 800 °C operating temperature. At first polarisation, an activation phase (increase in power density) is typically observed, ascribed to the cathode but not clarified. Activation may extend over days or weeks. The materials are fairly resistant to thermal cycling. A 1-cell stack cycled five times in 4 days at heating/cooling rates of 100–300 K h−1, showed no accelerated degradation. In a 5-cell stack, open circuit voltage (OCV) of all cells remained constant after three full cycles (800–25 °C). Power output is little affected by air flow but markedly influenced by small fuel flow variation. Fuel utilisation reached 88% in one 5-cell stack test. Performance homogeneity between cells lay at ±4–8% for three different 5- or 6-cell stacks, but was poor for a 12-cell stack with respect to the border cells. Degradation of a 1-cell stack operated for 5500 h showed clear dependence on operating conditions (cell voltage, fuel conversion), believed to be related to anode reoxidation (Ni). A 6-cell stack (50 cm2 cells) delivering 100 Wel at 790 °C (1 kWel L−1 or 0.34 W cm−2) went through a fuel supply interruption and a thermal cycle, with one out of the six cells slightly underperforming after these events. This cell was eventually responsible (hot spot) for stack failure.  相似文献   

11.
《Journal of power sources》2006,158(2):1246-1250
Sulfonated poly(ether sulfone) copolymers (PESs) are synthesized using hydroquinone 2-potassium sulfonate (HPS) with other monomers (bisphenol A and 4-fluorophenyl sulfone). A series of PESs with different mol% of hydrophilic group is prepared by changing the mole ratio of HPS in the polymerization reaction. The chemical structure and thermal stability of the polymers are characterized by using 1H NMR, FT-IR and TGA techniques. The PES 60 membrane, which has 60 mol% of HPS unit in the polymer backbone, has a proton conductivity of 0.091 S cm−1 and good insolubility in boiling water. The TGA showed that PES 60 is stable up to 272 °C with a char yield of about 29% at 900 °C under a nitrogen atmosphere. To investigate single-cell performance, a catalyst-coated PES 60 membrane is used together with hydrogen and oxygen as the fuel and the oxidant, respectively. Cell performance is enhanced by increasing the temperature. A current density of 1400 mA cm−2 at 0.60 V is obtained at 70 °C.  相似文献   

12.
《Journal of power sources》2006,155(2):203-212
The characteristics of a 50 W direct methanol fuel cell (DMFC) stack were investigated under various operating conditions in order to understand the behavior of the stack. The operating variables included the methanol concentration, the flow rate and the flow direction of the reactants (methanol and air) in the stack. The temperature of the stack was autonomously increased in proportion to the magnitude of the electric load, but it decreased with an increase in the flow rates of the reactants. Although the operation of the stack was initiated at room temperature, under a certain condition the internal temperature of the stack was higher than 80 °C. A uniform distribution of the reactants to all the cells was a key factor in determining the performance of the stack. With the supply of 2 M methanol, a maximum power of the stack was found to be 54 W (85 mW cm−2) in air and 98 W (154 mW cm−2) in oxygen. Further, the system with counter-flow reactants produced a power output that was 20% higher than that of co-flow system. A post-load behavior of the stack was also studied by varying the electric load at various operating conditions.  相似文献   

13.
《Journal of power sources》2002,110(1):144-151
In order to identify a proton-conducting polymer membrane suitable for replacing Nafion® 117 in direct methanol fuel cells (DMFC), we prepared a cross-linked copolymer of hydrophilic 2-acrylamido-2-methylpropanesulfonic acid (AMPS) and 2-hydroxyethyl methacrylate (HEMA). Fumed silicas were also added in an attempt to increase the amount of water adsorbed by the membrane and to enhance water retention. Hydrated copolymer membranes adsorbed significantly more water than Nafion® 117, but were no better at retaining water during drying under ambient conditions. Films composed of 4% AMPS—96% HEMA had a room temperature proton conductivity of 0.029 S cm−1, which increased to 0.06 S cm−1 at 80 °C.  相似文献   

14.
《Journal of power sources》2006,158(1):397-402
Polypyrrole coatings were prepared on stainless steel SS304 in order to study the corrosion protection provided by the conductive polymer in a simulated PEM fuel cell environment. The polypyrrole was deposited by electrochemical polymerization with 0.04, 0.07 and 0.14 g cm−2 onto SS304 electrodes. Polarization curves, taken after immersion for 1, 3 or 24 h in 0.1 M sulphuric acid at either room temperature or 60 °C were used as an accelerated test. For short immersion times, it was found that corrosion current densities (at free corrosion potentials), diminished up to 2 orders of magnitude for samples tested at room temperature and up to 4 orders of magnitude for samples tested at 60 °C. Furthermore, at potentials in the range of the PEM fuel cell anode potential, corrosion rates also decreased up to several orders of magnitude. However, these protective properties were lost at longer times of immersion. The addition of DBSA to the polypyrrole coatings did lead to improved corrosion current densities at the free corrosion potential, however due to the loss of passivity of these samples, the corrosion rates in the potential range applicable to PEM fuel cells were either similar to or larger than bare metal. SEM was used to determine the morphology of the coatings and showed that the most homogeneous coating was obtained for 0.07 g cm−2 polypyrrole, without the incorporation of DBSA.  相似文献   

15.
Some interesting features have been observed when 1-methoxy-2-propanol was studied in direct liquid fuel cells. Air flow rate ranging from 180 to 920 ml/min had no effect on performance, but the performance increased largely when the cell temperature was increased from 40, to 60, and then to 80 °C. The open circuit voltage of the cell was around 0.70 V, which was 0.08–0.33 V higher than that when methanol was used. At low air flow rates, 1-methoxy-2-propanol performed much better than methanol in the entire current density region at 60 and 80 °C. At high air flow rates, methanol performed better than 1-methoxy-2-propanol at current densities higher than 100 mA/cm2, but the latter performed better than the former at current densities less than ca. 50 mA/cm2. The crossover current density of 1.0 M 1-methoxy-2-propanol through a Nafion® 112 membrane was estimated electrochemically, and it was 25.6, 60.8 and 96.0 mA/cm2 at cell temperatures of 40, 60, and 80 °C, respectively, measured at 0.90 V. These numbers were much smaller than those of methanol that, e.g. had a crossover current density of 232 mA/cm2 at 0.9 V and 60 °C. One problem with using 1-methoxy-2-propanol as a fuel was that the cell anode seemed to be seriously poisoned by the oxidation intermediates at anode overpotentials lower than ca. 0.2 V.  相似文献   

16.
The performance of formic acid fuel oxidation on a solid PEM fuel cell at 60 °C is reported. We find that formic acid is an excellent fuel for a fuel cell. A model cell, using a proprietary anode catalyst produced currents up to 134 mA/cm2 and power outputs up to 48.8 mW/cm2. Open circuit potentials (OCPs) are about 0.72 V. The fuel cell runs successfully over formic acid concentrations between 5 and 20 M with little crossover or degradation in performance. The anodic polarization potential of formic acid is approximately 0.1 V lower than that for methanol on a standard Pt/Ru catalyst. These results show that formic acid fuel cells are attractive alternatives for small portable fuel cell applications.  相似文献   

17.
Among the possible systems investigated for energy production with low environmental impact, polymeric electrolyte membrane fuel cells (PEMFCs) are very promising as electrochemical power sources for application in portable technology and electric vehicles. For practical applications, operating FCs at temperatures above 100 °C is desired, both for hydrogen and methanol fuelled cells. When hydrogen is used as fuel, an increase of the cell temperature produces enhanced CO tolerance, faster reaction kinetics, easier water management and reduced heat exchanger requirement. The use of methanol instead of hydrogen as a fuel for vehicles has several practical benefits such as easy transport and storage, but the slow oxidation kinetics of methanol needs operating direct methanol fuel cells (DMFCs) at intermediate temperatures. For this reason, new membranes are required. Our strategy to achieve the goal of operating at temperatures above 120 °C is to develop organic/inorganic hybrid membranes. The first approach was the use of nanocomposite class I hybrids where nanocrystalline ceramic oxides were added to Nafion. Nanocomposite membranes showed enhanced characteristics, hence allowing their operation up to 130 °C when the cell was fuelled with hydrogen and up to 145 °C in DMFCs, reaching power densities of 350 mW cm−2. The second approach was to prepare Class II hybrids via the formation of covalent bonds between totally aromatic polymers and inorganic clusters. The properties of such covalent hybrids can be modulated by modifying the ratio between organic and inorganic groups and the nature of the chemical components allowing to reach high and stable conductivity values up to 6.4 × 10−2 S cm−1 at 120 °C.  相似文献   

18.
《Journal of power sources》2006,157(2):666-673
A hydrogen fuelled, 30 W proton exchange membrane fuel-cell (PEMFC) system is presented that is able to operate at an ambient temperature between −20 and 40 °C. The system, which comprises the fuel-cell stack, pumps, humidifier, valves and blowers is fully characterized in a climatic chamber under various ambient temperatures. Successful cold start-up and stable operation at −20 °C are reported as well as the system behaviour during long-term at 40 °C. A simple thermal model of the stack is developed and validated, and accounts for heat losses by radiation and convection. Condensation of steam is addressed as well as reaction gas depletion. The stack is regarded as a uniform heat source. The electrochemical reaction is not resolved. General design rules for the cold start-up of a portable fuel-cell stack are deduced by the thermal model and are taken into consideration for the design. The model is used for a comparison between active-assisted cold start-up procedures with a passive cold start-up from temperatures below 0 °C. It is found that a passive cold start-up may not be the most efficient strategy. Additionally, the influence of different stack concepts on the start-up behaviour is analysed by the thermal model. Three power classes of PEMFC stacks are compared: a Ballard Mk902 module for automotive applications with 85 kW, the forerunner stack Ballard Mk5 (5 kW) for medium power applications, and the developed OutdoorFC stack (30 W), for portable applications.  相似文献   

19.
《Journal of power sources》2002,110(1):222-228
The compatibility of a composite electrolyte composed of a yttria stabilized zirconia (YSZ) film and a yttria-doped ceria (YDC) substrate in a solid oxide fuel cell (SOFC) that can be operated under 800 °C was evaluated. The YSZ film coated on a YDC substrate was derived from a polymeric YSZ sol using a sol–gel spin coating method followed by heat-treatment at 1400 °C for 2 h. The SEM and XRD analysis indicated that there were no cracks, pinholes, or byproducts. The composite electrolyte comprising a YSZ film of 2 μm thickness and a YDC substrate of 1.6 mm thickness was used in a single cell performance test. A 0.5 V higher value of open circuit voltage (OCV) was found for the composite electrolyte single cell compared with an uncoated YDC single cell between 700 and 1050 °C and confirmed that the YSZ film was an electron blocking layer. The maximum power density of the composite electrolyte single cell at 800 °C, 122 mW/cm2 at 285 mA/cm2, is comparable with that of a YSZ single cell with the same thickness at 1000 °C, namely 144 mW/cm2 at 330 mA/cm2. The hypothetical oxygen partial pressure at the interface between the YSZ film and the YDC substrate for the composite electrolyte with the same thickness ratio at 800 °C is 5.58×10−18 atm which is two orders of magnitude higher than the equilibrium oxygen partial pressure of Ce2O3/CeO2, 2.5×10−20 atm, at the same temperature.  相似文献   

20.
《Journal of power sources》2005,145(2):262-265
Proton-conducting solid electrolytes composed of gadolinium-doped barium cerate (BCG) or gadolinium and praseodymium-doped barium cerate (BCGP) were tested in an intermediate-temperature fuel cell in which hydrogen or ammonia was directly fed. At 700 °C, BCG electrolytes with porous platinum electrodes showed essentially no loss in performance in pure hydrogen. Under direct ammonia at 700 °C, power densities were only slightly lower compared to pure hydrogen feed, yielding an optimal value of 25 mW cm−2 at a current density of 50 mA cm−2. This marginal difference can be attributed to a lower partial pressure of hydrogen caused by the production of nitrogen when ammonia is decomposed at the anode.A comparative test using BCGP electrolyte showed that the doubly doped barium cerate electrolyte performed better than BCG electrolyte. Overall fuel cell performance characteristics were enhanced by approximately 40% under either hydrogen or ammonia fuels using BCGP electrolyte. At 700 °C using direct ammonia feed, power density reached 35 mW cm−2 at a current density of approximately 75 mA cm−2. Minimal loss of performance was noted over approximately 100 h on-stream in alternating hydrogen/ammonia fuels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号