首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The transient state heat transfer formulation has been used to determine the air conditioning cooling load for two selected one room buildings in Khartoum: one made from brickwork and the other from wood. This formulation has been achieved by applying an explicit finite difference numerical techniques and adopting thermal network of electrical analogy to solve the transient conduction heat transfer equations. A computer program was developed to analyse the thermal network and to determine the cooling load for the wall, roof, window, ventilation and the total cooling load for each building for a typical hot summer day in Khartoum.A solar cooling system comprising mainly of a flat plate solar collector, a Lithium Bromide-Water absorption air conditioner, a storage and auxiliary tanks was integrated in the building and the energy equation for each component was obtained. A general simulation program for the solar cooled buildings has been developed and it was found that about 65% of the total cooling load demanded by the brick building could be supplied by energy from the solar collector, the other 35% portion had to be met by the auxiliary tank compared with 70% of the total cooling load demanded by the wood building which could be supplied by energy from the solar collector.  相似文献   

2.
This paper investigates the viability of increasing solar gains through the roof of an air-conditioned room using the thermal trap effect. In solving the heat conduction equations through the thermal trap and the concrete slab, the finite difference method has been employed and the initial conditions are derived from the assumption that, initially, the ceiling of the room and the top of the trap material are in equilibrium with constant room air temperature and the ambient air temperature, respectively. The effect of the thickness of the thermal trap and that of the concrete slab on the thermal flux transferred through the roof have been studied.  相似文献   

3.
In this study, the hydrogen production performance of a reactor assisted by a solar pond by photoelectrochemical method is examined conceptually. The main components of the new integrated system are a solar pond, a photovoltaic panel (PV) and a hybrid chlor-alkali reactor which consists of a semiconductor anot, photocathode and cation exchange membrane. The proposed system produces hydrogen via water splitting reaction and also yields the by products namely chlorine and sodium hydroxide while consumes saturated NaCl solution and pure water. In order to increase the efficiency of the reactor, the saturated hot NaCl solution at the heat storage zone (HSZ) of the solar pond is transferred to the anot section and the heated pure water by heat exchanger in the HSZ is transferred to cathode section. The photoelectrode releases electrons for hydrogen production with diminishing the power requirement from the PV panel that is used as a source of electrical energy for the electrolysis. The results confirm that the thermal performance of the solar pond plays a key role on the hydrogen production efficiency of the reactor.  相似文献   

4.
The transient phenomenon of the thermal restoration of an opaque wall of a room after the interruption of solar radiation flux was analysed. The wall, was initially, in thermal equilibrium under solar radiation. When the solar radiation flux was interrupted, the temperature distribution on the wall cross-section went through a transient state until it reached a final equilibrium state. During the thermal restoration of the wall, a thermal gain is maintained for the room as a result of the exploitation of a part of the thermal energy stored in the wall. Analytical expressions have been obtained for the duration of the thermal restoration, for the thermal gain of the room during this transient state and for the coefficients of storage and exploitation of the solar radiation by the wall.  相似文献   

5.
This communication presents an investigation of the thickness distribution of a given total thickness of the insulation inside and outside a thermal storage water wall for acheiving the maximum load levelling of the heat flux entering through the wall. Analysis is based on the solution of the heat conduction equation for the temperature distribution in the insulated wall subjected to periodic solar radiation and atmospheric air on one side and in contact with room air at constant temperature (corresponding to air-conditioned rooms) on the other side. an explicit solution for a temperature distribution satisfying the apporpriate boundary conditions at the surface has been derived to obtaing a periodic heat flux through the storage water wall. It is found that for a given total thickness (cost) of insulation the thicknesses of outside and inside insulation must be equal for best load levelling. Moreover, more load levelling is achieved when the whole of the insulation is outside rather than inside the thermal storage water wall.  相似文献   

6.
基于传热传质理论,建立一种太阳能污泥干燥室内热湿耦合传递的数学模型。综合考虑空气流动以及对流和辐射传热,利用CFD软件Fluent的k~ε湍流模型、组分输运模型及辐射模型,初步分析了在太阳辐射条件下不同干燥室结构、排风形式以及通风量对太阳能污泥干燥室内干燥区域的温度、相对湿度以及速度分布的影响。模拟结果表明:干燥室内温、湿度模拟值与实测值吻合较好,平均相对误差分别为3.55%和5.39%。对比分析不同结构下干燥室内的流场分布,两出口排风形式的太阳能污泥干燥室可以形成良好的干燥微环境。当两出口排风风速≥5 m/s时,室内干燥区域温度高于室外环境温度,同时相对湿度低于室外环境相对湿度,且增大出流风速,在干燥区域内空气扰流强度增强,有利于干燥室内污泥水分的蒸发。  相似文献   

7.
A mathematical model of a solar chimney   总被引:1,自引:0,他引:1  
K. S. Ong   《Renewable Energy》2003,28(7):1047-1060
A simple mathematical model of a solar chimney is proposed. The physical model is similar to the Trombe wall. One side of the chimney is provided with a glass cover which with the other three solid walls of the chimney form a channel through which the heated air could rise and flow by natural convection. Openings provided at the bottom and top of the chimney allow room air to enter and leave the channel. Steady state heat transfer equations were set up to determine the boundary temperatures at the surface of the glass cover, the rear solar heat absorbing wall and the air flow in the channel using a thermal resistance network. The equations were solved using a matrix-inversion solution procedure. The thermal performance of the solar chimney as determined from the glass, wall and air temperatures, air mass flow rate and instantaneous heat collection efficiency of the chimney are presented. Satisfactory correlation was obtained with experimental data from other investigators. Further experimental investigation is currently under way.  相似文献   

8.
自然通风条件下建筑围护结构及室内空气的温度计算   总被引:1,自引:0,他引:1  
建立太阳照射和自然通风条件下建筑与室内、外环境的空气平衡方程与热平衡方程,以及沿围护结构厚度的非稳态一维导热方程,求解得到建筑围护结构和室内空气的温度。选取广州夏季某一天的气象参数,计算围护材料分别采用钢筋混凝土、灰砂砖砌体、浮石混凝土、橡木和平板玻璃情况下,从7时至19时一单室建筑围护结构及室内空气的温度。  相似文献   

9.
This paper presents the thermal performance, in the heating and cooling of a building, of a double hollow concrete slab, one of whose faces is exposed to solar radiation and ambient air while the other is in contact with room air at constant temperature. A blackwened network of pipes is laid on the top surface and glazed sutiably. the flow rate of water / air through pipes is kept constant. It is seen that there is a time difference of 10-12 h between the maximum/ minimum of the thermal flux extering the room and the solair temperature for any flow rate. the heat flux inside the room is reduced appreciably for higher infiltration when there is no water flow to heat the building. the effect of a water film on the performance of the wall/roof has also been discussed and found to be more effective for the reduction of the heat flux coming into the building.  相似文献   

10.
This paper presents an investigation of the thermal behaviour of a non-airconditioned building with walls/roof being exposed to periodic solar radiation and atmospheric air while the inside air temperature is controlled by an isothermal mass, window and door in the walls of the room. The effects of air ventilation and infiltration, the heat capacities of the isothermal storage mass inside air and walls/roof, heat loss into the ground, and the presence/absence of the window/door have been incorporated in the realistic time dependent periodic heat transfer analysis to evaluate the overall heat flux coming into the room and the inside air temperature. A numerical computer model using typical weather data for Delhi has been made to appreciate the analytical results quantitatively. It is found that the heat fluxes through different walls have different magnitudes and phase lags w.r.t. the corresponding solair temperatures. The overall heat flux coming into the room as well as the room air temperature are sensitive functions of the number of air changes per hour, closing/opening of the window and the door ventilation. The effects of the heat capacity of the isothermal mass and the basement ground are found to reduce the inside air temperature swing and the presence of a window is found to increase the inside air temperature even when the window area is much smaller than the wall/roof area. The model presented would be an aid to a building architect for good thermal design of non-airconditioned buildings.  相似文献   

11.
‘Supply air windows’ under optimum flow conditions function as an efficient heat reclaim device. Heat escaping from the room, through the inner glass pane, is entrained in the air flow between the inner and outer sashes and returned to the room. A low-E coating to the inner glass acts as a barrier to radiation heat loss across the window so very low U-values can be achieved. These same characteristics enable the window to function as a passive solar component. Its efficiency is inferior to that of a dedicated passive solar device due to its transparency, but even so at modest levels of incident solar gain a worthwhile proportion is entrained into the air flow and supplied to the rooms as pre-heated ventilation air supply. These characteristics have been established by laboratory, test cell investigations, and simulations using computational fluid dynamics and ESP-r, a whole building dynamic thermal modelling tool.  相似文献   

12.
The article presents various methods and technologies for using of solar energy in anaerobic bioconversion systems. Various methods of convertion of solar radiation are consistently considered – from its direct use to photovoltaic, thermal, photovoltaic thermal and concentrating. Schemes for introducing solar energy converters into anaerobic bioconversion systems, as well as various solar radiation converters for heat and electricity supply of anaerobic bioconversion systems, are proposed. As power generating components in the article also discusses photovoltaic modules with an extended rated power period, photovoltaic thermal roofing panels with a two-component polysiloxane compound, thermal and photovoltaic thermal solar roofing panels, air-cooled photovoltaic thermal siding panel and concentrator solar photovoltaic thermal module with high-voltage matrix photovoltaic converters. The proposed schemes of systems and design of solar modules will ensure a reduction in the use of thermal energy from the produced gas for power supply for the own needs of anaerobic bioconversion systems, which will make them cheaper and more efficient in operation.  相似文献   

13.
The effects of Rayleigh number, aspect ratio and angle of inclination on the heat transfer through an inclined air-cell are studied via the numerical solution of the relevant two dimensional governing equations. This is done for two side wall boundary conditions, namely that of perfectly insulating and infinitely conducting side walls. In addition, the effects of a finite thickness wall with a finite value of thermal conductivity is studied, by solving the two dimensional conduction equation in the wall and matching the values of temperature and heat flux at the common boundaries between the two regions. It is shown that the perfectly in sulating and infinitely conducting boundary conditions are the two extremes of the real case and, depending on the values of the fluid parameters and the value of the wall thermal conductivity, the two fixed boundary conditions can be either accurate or inaccurate representations of the real case. A discussion of the relevance of this work to solar absorbers is included, with the major conclusion being that, depending on the aspect ratio of the cell used, cellular structures can be effective in reducing convective losses in inclined absorbers.  相似文献   

14.
A building-integrated photovoltaic/water-heating (BiPVW) system is able to generate higher energy output per unit collector area than the conventional solar systems. Through computer simulation with energy models developed for this integrative solar system in Hong Kong, the results showed that the photovoltaic/water-heating (PVW) system is having much economical advantages over the conventional photovoltaic (PV) installation. The system thermal performance under natural water circulation was found better than the pump-circulation mode. For a specific BiPVW system at a vertical wall of a fully air-conditioned building and with collectors equipped with flat-box-type thermal absorber and polycrystalline silicon cells, the year-round thermal and cell conversion efficiencies were found respectively 37.5% and 9.39% under typical Hong Kong weather conditions. The overall heat transmission through the PVW wall is reduced to 38% of the normal building facade. When serving as a water pre-heating system, the economical payback period was estimated around 14 years. This greatly enhances the PV market opportunities.  相似文献   

15.
参照变电站主变压器室,建立了双侧开口热源建筑数值模型,通过改变大气透过率(sunshine fraction)的大小改变日照强度,利用FL U EN T进行求解,考察日照作用对热源建筑自然通风流动的影响。计算结果表明:日照作用影响热源建筑室内外热量传递的大小和方向,当大气透过率为0.15时,室内外两侧传递热量达到平衡。较大的日照强度导致通风量增大,室内气流速度分布更均匀,日照作用下不同高度的气流温度受到的主要影响因素不同。  相似文献   

16.
The electrical efficiency of a photovoltaic system drops as its operating temperature rises and PV cooling is necessary. The photovoltaic/thermal (PV/T) system is a relatively recent type of solar collector where a circulating fluid of lower temperature than PV module extracts heat from it, cooling the module to improve its output power while the solar pre-heated fluid provides sensible heat. In the present work, air cooling of a commercial PV module configured as PV/T air solar collector by natural flow is presented, where two low cost modification techniques to enhance heat transfer to air stream in the air channel are studied. The considered methods consist of thin metal sheet suspended at the middle or fins attached to the back wall of the air-channel to improve heat extraction from the module. A numerical model was developed and validated against the experimental data obtained from outdoor test campaigns for both glazed and unglazed PV/T prototype models studied. The validation results show good agreement between predicted values and measured data and thus could be used to study analytically the performance of these PV/T air collectors with respect to several design and operating parameters. The modified systems present better performance than the usual type and will contribute to better performance of integrated PV systems for natural ventilation applications in buildings, both space cooling and heating.  相似文献   

17.
This paper investigates the feasibility of increasing solar gains through the roof/wall of a building utilizing the thermal trap effect. It is seen that optimum thickness of the thermal trap is 0.05m. Corresponding to this thickness, there is a net positive heat gain into the room at all times for a 0.20m thickness of concrete wall/roof.  相似文献   

18.
Using water as a coolant to reduce the temperature of solar cells is one of the best methods for improving the efficiency of a photovoltaic/thermal system. However the heat absorbed from the solar cell panel is not enough for providing domestic hot water. In this article, a new architecture of photovoltaic/thermal system is proposed and investigated. A silicon monocrystalline photovoltaic module is used with appropriate reflectors in order to increase insolation in conjunction with a closed loop cooling facility to efficiently extract the panel's heat. The absorbed heat from the photovoltaic/thermal panel, is used to preheat the water flow before entering four vacuum tube solar water heaters placed on both sides of the photovoltaic/thermal panel. Performance evaluation of this system in comparison to a similar bare photovoltaic panel, showed a significant increase in the system's electrical and thermal energy output.  相似文献   

19.
The aim of this study is to determine how time lag and decrement factor are affected by wall orientation and exterior surface solar absorptivity, for specific climatic conditions. Their influence forms a non-sinusoidal periodical forcing function that simulates suitably the outdoor temperature fluctuations. This novel approach, allows the predictability of building's thermal response in an efficient way. The investigation is carried out for various insulated opaque wall formations comprising typical material elements, during the summer period in the mild Greek region. This study that allows proper building planning procedures, at the very early stages of the envelope design, presents great importance. The analysed configurations are assumed to have an orientation that corresponds to each compass point. In addition, the solar absorptivity of surface coatings is assumed to be varying from 0 to 1. The transient thermal analysis is obtained via a thermal circuit that models accurately the fundamental heat transfer mechanisms on both boundaries and through the multi-layered wall configurations. Moreover, the mathematical formulation and solution of this lumped model is achieved in discrete time steps by adopting the non-linear nodal method. The simulation results are focused on the single and combined effects of orientation and solar absorptivity on the dynamic thermal characteristics of various wall configurations.  相似文献   

20.
Based on periodic solutions of the governing heat conduction equations in a single zone building, computer software ADMIT has been developed for thermal simulation of buildings. Standard computer software, namely TRNSYS and SUNCODE, have also been used to simulate the same building under similar conditions. Simulations have been performed for three different climatic zones in India for light and heavy constructions under conditions of glazed/unglazed areas and ventilation rates. The results are presented in terms of the hourly variation of the room temperature. For insulated heavy construction, the results of different models are significantly different. This difference is due to the use of different approaches to solve the heat conduction equations. SUNCODE depends on the RC network approach and underestimates the heat losses. TRNSYS uses the transfer function approach, which is sensitive to the initially assumed value of the room temperature. ADMIT represents a quasi-steady-state periodic variation and is not suitable for transient variations. For insulated light buildings, the heat transfer mechanisms used in the mathematical models are not the governing factors. The models also differ in treating the penetration of solar radiation through a glazed window and the subsequent heat-transfer mechanism. For a south window and air changes in an insulated building, the results obtained by SUNCODE and ADMIT are in good agreement, but the results obtained by TRNSYS are considerably different. The reason for this needs detailed analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号