首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This research target was to improve the thermal efficiency of a solar water heating system (SWHS) coupled with a built-in solar water pump. The designed system consists of 1.58-m2 flat plate solar collectors, an overhead tank placed at the top level, the larger water storage tank without a heat exchanger at the lower level, and a one-way valve for water circulation control. The discharge heads of 1 and 2 m were tested. The pump could operate at the collector temperature of about 70–90 °C and vapor gage pressure of 10–18 kPa. It was found that water circulation within the SWHS ranged between 15 and 65 l/d depending upon solar intensity and discharge head. Moreover, the max water temperature in the storage tank is around 59 °C. The max daily pump efficiency is about 0.0017%. The SWHS could have max daily thermal efficiency of about 21%. It is concluded that the thermal efficiency was successfully improved, except for the pump one. The new SWHS with 1 m discharge head or lower is suitable for residential use. It adds less weight to a building roof and saves electrical energy for a circulation pump. It has lower cost compared to a domestic SWHS.  相似文献   

2.
Experiments are presented to demonstrate the benefits of dividing an indirect thermal storage into two compartments. The transient discharge experiments were conducted in an undivided and equally divided 126 l rectangular storage vessel, which has a height to depth aspect ratio of 9.3:1 and is inclined at 30° to the horizontal. A 240-tube copper heat exchanger with a total surface area of 2.38 m2 was immersed in the storage fluid. For the divided storage, the heat exchanger flow path was in series through the two compartments. Water flow rate through the heat exchanger was varied from 0.05 to 0.15 kg/s to demonstrate the effect of varying the number of transfer units (NTU) from 2.2 to 7 on the relative performance of undivided and divided storage vessels. Reported measurements include transient storage temperature distribution, heat exchanger outlet temperature, delivered energy, and exergy of the divided and undivided storage. The divided storage provides higher energy delivery rates and higher heat exchanger outlet temperatures during most of the discharge. The magnitude of these benefits depends on NTU and the extent of discharge. For a flow rate of 0.05 kg/s, corresponding to a nominal NTU of 7, the divided storage delivers a maximum of 11% more energy than the undivided storage when 100 l of hot water or 55% of the stored energy has been delivered. For a flow rate of 0.15 kg/s, corresponding to a nominal NTU of 2.5, the divided storage delivers a maximum of 5% more energy at the same level of discharge. Data agree with first and second law analyses of a storage system comprised of two tanks in series.  相似文献   

3.
Periodic whole cross-section computation models are established for segmental baffle heat exchanger, shutter baffle heat exchanger, and trapezoid-like tilted baffle heat exchanger. The reliability of models is verified by comparing the simulated results to the results obtained from the Bell-Delaware method. Due to the orthogonal assembly of the baffles, the shell side fluid shows the twisty flow of trapezoid-like tilted baffle heat exchanger. The essential mechanism on disturbing flow and heat transfer enhancement is revealed by defining the non-dimensional factor η of the shell side fluid flow direction of heat exchanger and the field synergy principle. The results show that at the same Reynolds number, the shell side fluid convection heat transfer coefficient of trapezoid-like tilted baffle heat exchanger is 12.43%-24.33% and 6.71%-11.51% higher than those of segmental baffle heat exchanger and shutter baffle heat exchanger, respectively. The shell side fluid flow velocity field and the pressure gradient field of trapezoid-like tilted baffle heat exchanger and shutter baffle heat exchanger decreases compared with that of segmental baffle heat exchanger, so the shell side fluid flow resistance and pressure drop is increased; the shell side comprehensive performance of trapezoid-like tilted baffle heat exchanger is 5.85%-9.06% higher than that of segmental baffle heat exchanger, and 15.27%-23.28% higher than that of shutter baffle heat exchanger. In this study, a baffle structure with higher efficiency of the energy utilization for the heat exchanger is provided.  相似文献   

4.
为了提高折流板换热器的换热性能,改变了折流板换热器的折弯夹角和折流板间距,利用ANSYS Fluent对换热器壳程流体流动与换热过程进行模拟,分析了不同折流板折弯夹角α (110°,135°,170°和180°)、折流板间距(250,300和350 mm)和雷诺数(10 000,20 000和50 000)对换热器壳程压力、速度和温度的影响。结果表明:增大雷诺数对改善流动死区有很大的作用,雷诺数为50 000时的流动死区相对于雷诺数为10 000时面积减小较大;随着夹角α的减小,折流板背流侧的流动死区面积逐渐减小、换热器的表面传热系数和进出口压降力越大,夹角α为110°时出口温度最小、进出口压降最大,夹角α为135°时PEC最大且换热器综合性能最优;折流板间距增大,压力变化梯度减小,压差变化幅度减小,壳程出口温度变化不成正比关系,间距为300 mm时出口温度最低。  相似文献   

5.
Thermal performance of a two-phase thermosyphon energy storage system   总被引:1,自引:0,他引:1  
This article presents an energy storage system, which can be readily integrated with the building structure. It stores heat supplied by solar energy via the two-phase closed loop thermosyphon to storage tank and releases stored heat in energy storage material via two-phase closed thermosyphon to the heat exchanger through the flow of transport fluid. The functions of such energy storage system have three operating modes, i.e., heat charge, heat discharge, and simultaneous charge and discharge. The thermal performance of the system with alcohol and water as working fluid is experimentally investigated. The results show that the storage system employing alcohol as working fluid in the loop thermosyphon provides better performance; the system gives optimum heat charge and discharge performance under 35–40% fill ratio, regardless whether the working fluid is water or alcohol. The system displays optimum charge efficiency of 73% and optimum discharge efficiency of 85% with alcohol as working fluid.  相似文献   

6.
A numerical investigation on periodic laminar flow and heat transfer behaviors in a three-dimensional isothermal wall square duct fitted with 30° angled baffles on lower duct wall only is presented. The computations based on a finite volume method with the SIMPLE algorithm have been conducted for the fluid flow in terms of Reynolds numbers ranging from 100 to 2000. The angled baffles with attack angle of 30° are mounted periodically on the lower duct wall to generate a longitudinal vortex flow through the tested duct. Effects of different baffle height and three pitch length ratios on heat transfer and flow characteristics in the duct are investigated. The study shows that the longitudinal vortex flow created by the baffle helps to induce impinging flows over the baffle trailing end sidewall and the inter-baffle cavity wall resulting in drastic increase in heat transfer rate over the test duct. The computational results reveal that the Nusselt number ratio and the maximum thermal enhancement factor values for using the angled baffle are, respectively, found to be about 7.9 and 3.1 at Re = 2000, BR = 0.3 and PR=1.5.  相似文献   

7.
The research goal was to develop a new solar water heater system (SWHS) that used a solar water pump instead of an electric pump. The pump was powered by the steam produced from a flat plate collector. Therefore, heat could be transferred downward from the collector to a hot water storage tank. The designed system consisted of four panels of flat plate solar collectors, an overhead tank installed at an upper level and a large water storage tank with a heat exchanger at a lower level. Discharge heads of 1, 1.5 and 2 m were tested. The pump could operate at the collector temperature of about 70–90 °C and vapor gage pressure of 7–14 kPa. It was found that water circulation within the SWHS ranged between 12 and 59 l/d depending on the incident solar intensity and system discharge head. The average daily pump efficiency was about 0.0014–0.0019%. Moreover, the SWHS could have a daily thermal efficiency of about 7–13%, whereas a conventional system had 30–60% efficiency. The present system was economically comparable to a conventional one.  相似文献   

8.
An experimental study has been performed to investigate the heat and mass transfer performance in a falling film absorber of a small-sized absorption chiller/heater. The components of the chiller/heater were concentrically arranged in a cylindrical form with a low temperature generator, an absorber and an evaporator from the center. The arrangement of such a helical-type heat exchanger makes the system more compact compared to a conventional one. As a working fluid, LiBr + LiI + LiNO3 + LiCl solution is used to get improved heat transfer effect. The heat and mass transfer coefficients of the helical absorber provide similar values compared with the data obtained for horizontal absorbers at similar solution flow rates. The heat and mass transfer coefficients of LiBr + LiI + LiNO3 + LiCl solution increase as the solution flow rate per unit length increases. However, if the solution flow rate is larger than 0.03 kg/m s, the heat and mass transfer increase is minimal. Thus, 0.03 kg/m s is recommended as an optimal solution flow rate. The heat and mass flux performance of LiBr + LiI + LiNO3 + LiCl solution shows the tendency of 2-5% increase compared with that of LiBr solution.  相似文献   

9.
A numerical investigation of laminar periodic flow and heat transfer in a three-dimensional isothermal-wall square channel fitted with 45° inclined baffles on one channel wall is carried out in the present work. The finite volume method is introduced and the SIMPLE algorithm has been implemented for all computations. The fluid flow and heat transfer characteristics are presented for Reynolds numbers ranging from 100 to 1200. The 45° baffle mounted only on the lower channel wall has a height of b and an axial pitch length (L) equal to channel height (H). Effects of flow blockage ratios, BR = b/H = 0.1–0.5, on heat transfer and pressure loss in the square channel are examined and also compared with the typical case of the transverse baffle (or 90° baffle). It is found that apart from the rise of Reynolds number, the increase in the blockage ratio with the attack angle (α) of 45° results in considerable increases in the Nusselt number and friction factor values. The use of the 45° baffle can help to generate a streamwise main vortex flow throughout the channel leading to fast and chaotic mixing of flow between the core and the wall regions. In addition, the computational results reveal that the significant increase in heat transfer rate is due to impingement jets induced by a longitudinal vortex pair (P-vortex) of flow, appearing on the upper, lower and baffle trailing end side walls. The appearance of vortex-induced impingement flows created by the baffles leads to the maximum thermal enhancement factor of about 2.2 at BR = 0.4 and Re = 1200. The enhancement factor of the 45° baffle investigated is found to be higher than that of the 90° baffle for all Reynolds numbers and baffle heights.  相似文献   

10.
Performance estimates are compared for a solar assisted domestic hot water ststem with a yearly reference load of 13.7 GJ(3811 kWhryr−1) for storage subsystems of pure water and hybrid water and wax systems. Three models of the hybrid system are used ranging from the infinite heat transfer model, the detailed heat transfer model and the simplified constant Nusselt number model.Sensitivity studies are made for changes in collector type (loss coefficient), collector area, mass of water stored, mass of wax stored, heat exchanger gap spacing, and thermal properties of wax.The optimal heat exchanger gap spacing is established for a particular prototype wax store on hand and its performance figure is given.Although the conclusion is drawn that a paraffin wax store in this particular application would not replace water as a storage medium, other conclusions are discussed which would apply to the design and modelling of wax storage subsystems in other applications.  相似文献   

11.
A zeolite‐water adsorption module, which has been originally constructed for an adsorption heat pump, has been experimentally investigated as an adsorptive thermal energy storage unit. The adsorber/desorber heat exchanger contains 13.2 kg of zeolite 13X and is connected to an evaporator/condenser heat exchanger via a butterfly valve. The flow rate of the heat transfer fluid in the adsorber/desorber unit has been changed between 0.5 and 2.0 l min?1, the inlet temperature to the evaporator between 10 and 40°C. It turned out that the higher the flow rate inside the adsorber/desorber unit the faster and more effective is the discharge of heat. However, at lower flow rates higher discharge temperatures are obtained. Storage capacities of 2.7 and 3.1 kWh have been measured at the evaporator inlet temperatures of 10 and 40°C, respectively, corresponding to thermal energy storage densities of 80 and 92 kWh m?3 based on the volume of the adsorber unit. The measured maximum power density increases from 144 to 165 kWh m?3 as the flow rate in the adsorber increases from 0.5 to 2 l min?1. An internal insulation in form of a radiation shield around the adsorber heat exchanger is recommended to reduce the thermal losses of the adsorptive storage. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
This study uses a projection finite element analysis with an element-by-element preconditioned conjugate gradient method to investigate the non-isothermal tapered flow channel installed with a baffle plate for enhancing cell performance in the cathodic side of a PEMFC. The parameters studies including tapered ratio (0.25 ∼ 1.0) and gap ratio (0.005 ∼ 0.2) on the cell performance have been explored in detail. The results indicate that the stronger composite effect of tapered flow channel and baffle blockage provides a better convection heat transfer performance and a higher fuel flow velocity and thus enhances the cell performance.  相似文献   

13.
In this paper, hydriding in a cylindrical metal hydride hydrogen storage tank containing HWT5800 (Ti0.98Zr0.02V0.43Fe0.09Cr0.05Mn1.5) is numerically studied with a two-dimensional mathematical model. The heat and mass transfer of this model is computed by finite difference method. The effects of supply pressure, cooling fluid temperature, overall heat transfer coefficient and height to the radius ratio of the tank (H/R) on the hydriding in the hydrogen storage tank are studied. It is found that hydride formation initially takes place uniformly all over the bed and hydriding processes take place at a slower rate at the core region. Supply pressure, cooling fluid temperature and overall heat transfer coefficient play significant roles during the absorption of hydrogen. At the H/R = 2 both maximum bed temperature and the average bed temperature are the highest, and the hydride bed takes the longest time to saturate.  相似文献   

14.
为研究半圆柱空间异形孔板换热器的流动与传热特性,建立换热器简化物理模型,运用ANSYS软件建立CFD模型进行数值模拟,分析了开孔形状与板间距的影响,并对比了半圆柱空间异形孔板换热器与弓形板换热器的联系与区别。研究结果表明:半圆柱异形孔板换热器壳侧流体呈纵向流动,壳侧流体通过孔隙形成射流冲刷管壁,具有强化传热作用;板间距一定,开孔面积相近时,开孔形状对壳侧压降的影响较小,对换热性能的影响稍大;板间距越小壳侧换热系数越高但其综合性能指标越小;圆头三角孔板换热器在板间距30 mm时的壳侧换热系数比40及50 mm方案分别高5.62%,10.06%,综合性能指标低1.44%,2.07%;异形孔板换热器的综合性能指标比弓形折流板换热器平均约高27.89%。  相似文献   

15.
The use of a horizontal cylindrical water storage tank contributes to pressure resistant, low height and efficient ICS solar systems. These systems can satisfactorily achieve water heating when the cylindrical storage tank is combined with stationary CPC or involute type curved reflectors. The diameter of the cylindrical storage tank determines the length of the reflectors, the system depth and the ratio of the stored water per aperture area. In these solar systems the storage tank can be partially thermally insulated to suppress thermal losses from it to the ambience. We constructed four experimental models with truncated symmetric CPC reflectors, two with 90° and other two with 60° of acceptance angle, half of them without and half with a 1/4 thermally insulated storage tank cylindrical surface. In addition, we constructed two ICS systems with involute reflectors, with acceptance angle 180°, one without and the other one with a 1/4 thermally insulated storage tank. The six ICS systems were tested under the same weather conditions and without water drain, to determine their stored water temperature variation, mean daily efficiency and thermal losses during night. The results showed that CPC reflectors contribute to efficient operation of systems day and night, while involute reflectors mainly to the water heat preservation during night.  相似文献   

16.
Metal hydride (MH) storage is known as a safe storage method because it does not require complex processes like high pressure or very low temperature. However, it is necessary to use a heat exchanger due to the endothermic and exothermic reactions occurring during the charging and discharging processes of the MH tanks. The performance of the MH is adversely affected by the lack of a heat exchanger or a suitable temperature range and it causes non-stable hydrogen supply to the fuel cell systems. In this study, effect of the tank surface temperature on hydrogen flow and hydrogen consumption performance were investigated for the MH hydrogen storage system of a hydrogen Fuel Cell Electric Vehicle (FCEV). Different temperature values were arranged using an external heat circulator device and a heat exchanger inside the MH tank. The fuel cell (FC) was operated at three different power levels (200 W, 400 W, and 600 W) and its performance was determined depending on the temperature and discharge flow rate of the MH tank. When the heat exchanger temperature (HET) was set to 40 °C, the discharge performance of the MH tank increased compared to lower temperatures. For example, when the FC power was set to 200 W and the HET of the system was at 40 °C, 1600 L hydrogen was supplied to the FC and 2000 Wh electrical energy was obtained. The results show that the amount of hydrogen supplied from the MH tank decreases significantly by increasing the flow rate in the system and rapid temperature changes occur in the MH tank.  相似文献   

17.
This paper focuses on pump flow rate optimization for forced circulation solar water heating systems with pipes. The system consists of: an array of flat plate solar collectors, two storage tanks for the circulation fluid and water, a heat exchanger, two pumps, and connecting pipes. The storage tanks operate in the fully mixed regime to avoid thermal stratification. The pipes are considered as separated components in the system so as to account for their thermal effects. The objective is to determine optimal flow rates in the primary and secondary loops in order to maximize energy transfer to the circulation fluid storage tank, while reaching user defined temperatures in the water storage tank to increase thermal comfort. A model is developed using mainly the first and second laws of thermodynamics. The model is used to maximize the difference between the energy extracted from the solar collector and the combined sum of the energy extracted by the heat exchanger and corresponding energies used by the pumps in the primary and secondary loops. The objective function maximizes the overall system energy gain whilst minimizing the sum of the energy extracted by the heat exchanger and corresponding pump energy in the secondary loop to conserve stored energy and meet the user requirement of water tank temperatures. A case study is shown to illustrate the effects of the model. When compared to other flow control techniques, in particular the most suitable energy efficient control strategy, the results of this study show a 7.82% increase in the amount of energy extracted. The results also show system thermal losses ranging between 5.54% and 7.34% for the different control strategies due to connecting pipe losses.  相似文献   

18.
An experimental energy storage system has been designed using a horizontal concentric tube heat exchanger incorporating a medium temperature phase change material (PCM) Erythritol, with a melting point of 117.7 °C. Three experimental configurations, a control system with no heat transfer enhancement and systems augmented with circular and longitudinal fins have been studied. The results presented compare the system heat transfer characteristics using isotherm plots and temperature-time curves. The system with longitudinal fins gave the best performance with increased thermal response during charging and reduced subcooling in the melt during discharging. The experimentally measured data for the control, circular finned and longitudinal finned systems have been shown to vindicate the assumption of axissymmetry (direction parallel to the heat transfer fluid flow) using temperature gradients in the axial, radial and angular directions in the double pipe PCM system.  相似文献   

19.
The thermal advantages by utilizing discharge from different levels in solar storage tanks are investigated, both for a small SDHW system and for a solar combisystem.The investigations showed that it is possible to increase the thermal performance of both types of systems by using two draw-off levels from the solar tanks instead of one draw-off level at a fixed position.The best position of the second draw-off level is in the middle or just above the middle of the tank. For the investigated small SDHW system with a realistic draw off hot water temperature of 40 °C and 45 °C and an auxiliary volume temperature of 50.5 °C the increase of the thermal performance by the second draw-off level is about 6%.For the investigated solar combisystem the increase in thermal performance by using one extra draw-off level, either for the domestic hot water heat exchanger or for the heating system, is about 3%, while an improvement of about 5% is possible by using a second draw-off level both for the domestic hot water heat exchanger and for the heating system.  相似文献   

20.
The thermal performance of thermosyphon flat-plate solar water heater with a mantle heat exchanger was investigated to show its applicability in China. The effect on the performance of the collector of using a heat exchanger between the collector and the tank was analyzed. A “heat exchanger penalty factor” for the system was determined and energy balance equation in the system was presented. Outdoor tests of thermal performance of the thermosyphon flat-plate solar water heater with a mantle heat exchanger were taken in Kunming, China. Experimental results show that mean daily efficiency of the thermosyphon flat plate solar water heater with a mantle heat exchanger with 10 mm gap can reach up to 50%, which is lower than that of a thermosyphon flat-plate solar water heater without heat exchanger, but higher than that of a all-glass evacuated tubular solar water heater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号